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Laser stabilization

■ Assume a diode laser is set to some particular wavelength

■ There exists no guarantee that that wavelength will remain 

constant over time

■ Atomic and molecular transitions are nearly always constant, 

however

■ A gas cell is used, and the laser wavelength varied around the 

target

■ Absorption peaks when a transition is accessible by the laser
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Visible fluorescence!
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Applications for laser locks

■ In general used to address specific transitions – e.g.:

– Laser cooling

– Laser trapping

– Measuring time standards (Yb suggested)

■ Precision phase measurements for interferometers – e.g.:

– LIGO
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Doppler effects

■ Any gas has a distribution of particle velocities, resulting in a 

Doppler shift

■ This shift broadens the absorption signal and causes muddling 

with nearby transitions

■ Doppler-broadened transitions are ~GHz, versus natural 

linewidths ~MHz
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Doppler effects
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Sure enough:
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Saturated absorption spectroscopy

■ The laser beam is divided into a weak probe and a strong pump 

(~10:1 or greater in intensity)

■ The pump is aligned to exactly overlap the probe, but in opposite 

direction

■ Thus the two beams address different velocity groups unless on 

resonance

■ If on resonance, the pump “burns a hole” into the absorption

■ Feedback is then arranged to constrain the laser wavelength to 

that of the transition
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The MOT in 
action!
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Laser cooling
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Laser cooling

■ Zeeman slower uses a nonlinear magnet to match resonance to 

light

■ Magneto-optical trap (MOT) slows using red-detuned light

■ Optical dipole trap (ODT) creates a conservative potential well

■ Evaporative cooling allows high-energy atoms to exit
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Bose-Einstein condensate

■ Ultracold bosons “condense” into superfluid ground state

■ This allows all atoms to be described by a single wave equation

■ A BEC can be used to create an atom beam

– Vastly increases coherence over non-BEC beams

– Amplifies quantum effects

■ High-precision interferometric measurement of α

■ Multi-species mixtures for observation of interactions and 

superfluid properties
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Progress this summer
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A strong Doppler profile
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And its derivative
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Progress this summer

■ Observed a strong Doppler profile and its derivative

■ Greatly improved pump power and beam size (intensity)

■ Set up or built much of the necessary infrastructure

■ Filled in personal learning gaps

■ Burned and shocked myself many times
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