Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation

Arron Potter

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation

Arron Potter

■ Assume a diode laser is set to some particular wavelength

- Assume a diode laser is set to some particular wavelength
- There exists no guarantee that that wavelength will remain constant over time

■ Assume a diode laser is set to some particular wavelength

- There exists no guarantee that that wavelength will remain constant over time
- Atomic and molecular transitions are nearly always constant, however

- Assume a diode laser is set to some particular wavelength
- There exists no guarantee that that wavelength will remain constant over time
- Atomic and molecular transitions are nearly always constant, however
- A gas cell is used, and the laser wavelength varied around the target

- Assume a diode laser is set to some particular wavelength
- There exists no guarantee that that wavelength will remain constant over time
- Atomic and molecular transitions are nearly always constant, however
- A gas cell is used, and the laser wavelength varied around the target
- Absorption peaks when a transition is accessible by the laser

Visible fluorescence!

University of Washington - Institute for Nuclear Theory - REU 2016

In general used to address specific transitions – e.g.:

- Laser cooling

- Laser cooling
- Laser trapping

- Laser cooling
- Laser trapping
- Measuring time standards (Yb suggested)

- Laser cooling
- Laser trapping
- Measuring time standards (Yb suggested)
- Precision phase measurements for interferometers

- Laser cooling
- Laser trapping
- Measuring time standards (Yb suggested)
- Precision phase measurements for interferometers e.g.:
 LIGO

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation

Arron Potter

Doppler effects

 Any gas has a distribution of particle velocities, resulting in a Doppler shift

Doppler effects

- Any gas has a distribution of particle velocities, resulting in a Doppler shift
- This shift broadens the absorption signal and causes muddling with nearby transitions

Doppler effects

- Any gas has a distribution of particle velocities, resulting in a Doppler shift
- This shift broadens the absorption signal and causes muddling with nearby transitions
- Doppler-broadened transitions are ~GHz, versus natural linewidths ~MHz

Sure enough:

Photodiode voltage versus laser scan position

The laser beam is divided into a weak probe and a strong pump (~10:1 or greater in intensity)

- The laser beam is divided into a weak probe and a strong pump (~10:1 or greater in intensity)
- The pump is aligned to exactly overlap the probe, but in opposite direction

- The laser beam is divided into a weak probe and a strong pump (~10:1 or greater in intensity)
- The pump is aligned to exactly overlap the probe, but in opposite direction
- Thus the two beams address different velocity groups unless on resonance

- The laser beam is divided into a weak probe and a strong pump (~10:1 or greater in intensity)
- The pump is aligned to exactly overlap the probe, but in opposite direction
- Thus the two beams address different velocity groups unless on resonance
- If on resonance, the pump "burns a hole" into the absorption

- The laser beam is divided into a weak probe and a strong pump (~10:1 or greater in intensity)
- The pump is aligned to exactly overlap the probe, but in opposite direction
- Thus the two beams address different velocity groups unless on resonance
- If on resonance, the pump "burns a hole" into the absorption
- Feedback is then arranged to constrain the laser wavelength to that of the transition

University of Washington - Institute for Nuclear Theory - REU 2016

Image courtesy [2]

University of Washington - Institute for Nuclear Theory - REU 2016

University of Washington - Institute for Nuclear Theory - REU 2016

Image courtesy [2]

Ytterbium cell:

- Heat (400°C)

- Heat (400°C)
- Bulky

- Heat (400°C)
- Bulky
- Maintenance

- Heat (400°C)
- Bulky
- Maintenance
- Visibility

- Ytterbium cell:
 - Heat (400°C)
 - Bulky
 - Maintenance
 - Visibility

■ lodine cell:

- Ytterbium cell:
 - Heat (400°C)
 - Bulky
 - Maintenance
 - Visibility

- lodine cell:
 - Room temperature

- Heat (400°C)
- Bulky
- Maintenance
- Visibility

- Iodine cell:
 - Room temperature
 - Small, easily moveable

- Heat (400°C)
- Bulky
- Maintenance
- Visibility

- Iodine cell:
 - Room temperature
 - Small, easily moveable
 - No maintenance

- Heat (400°C)
- Bulky
- Maintenance
- Visibility

- Iodine cell:
 - Room temperature
 - Small, easily moveable
 - No maintenance
 - Made of clear glass

- Ytterbium cell:
 - Heat (400°C)
 - Bulky
 - Maintenance
 - Visibility

- Iodine cell:
 - Room temperature
 - Small, easily moveable
 - No maintenance
 - Made of clear glass

Easy to see visually

8/18/2016 University of Washington Physics - Ultracold Atoms Group - INT REU

University of Washington - Institute for Nuclear Theory - REU 2016

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation

Arron Potter

Zeeman slower uses a nonlinear magnet to match resonance to light

- Zeeman slower uses a nonlinear magnet to match resonance to light
- Magneto-optical trap (MOT) slows using red-detuned light

The MOT in action!

8/18/2016

University of Washington Physics -Ultracold Atoms Group - INT REU

University of Washington - Institute for Nuclear Theory - REU 2016

Image courtesy Deep Gupta

- Zeeman slower uses a nonlinear magnet to match resonance to light
- Magneto-optical trap (MOT) slows using red-detuned light
- Optical dipole trap (ODT) creates a conservative potential well

University of Washington - Institute for Nuclear Theory - REU 2016

Image courtesy [5]

- Zeeman slower uses a nonlinear magnet to match resonance to light
- Magneto-optical trap (MOT) slows using red-detuned light
- Optical dipole trap (ODT) creates a conservative potential well
- Evaporative cooling allows high-energy atoms to exit

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation

Arron Potter

Ultracold bosons "condense" into superfluid ground state

- Ultracold bosons "condense" into superfluid ground state
- This allows all atoms to be described by a single wave equation

- Ultracold bosons "condense" into superfluid ground state
- This allows all atoms to be described by a single wave equation
- A BEC can be used to create an atom beam

- Ultracold bosons "condense" into superfluid ground state
- This allows all atoms to be described by a single wave equation
- A BEC can be used to create an atom beam
 - Vastly increases coherence over non-BEC beams

- Ultracold bosons "condense" into superfluid ground state
- This allows all atoms to be described by a single wave equation
- A BEC can be used to create an atom beam
 - Vastly increases coherence over non-BEC beams
 - Amplifies quantum effects

- Ultracold bosons "condense" into superfluid ground state
- This allows all atoms to be described by a single wave equation
- A BEC can be used to create an atom beam
 - Vastly increases coherence over non-BEC beams
 - Amplifies quantum effects
- High-precision interferometric measurement of α

- Ultracold bosons "condense" into superfluid ground state
- This allows all atoms to be described by a single wave equation
- A BEC can be used to create an atom beam
 - Vastly increases coherence over non-BEC beams
 - Amplifies quantum effects
- High-precision interferometric measurement of α
- Multi-species mixtures for observation of interactions and superfluid properties

8/18/2016 University of Washington Physics - Ultracold Atoms Group - INT REU

A strong Doppler profile

Doppler and differentiated Doppler signal versus laser frequency shift

And its derivative

Doppler and differentiated Doppler signal versus laser frequency shift

Time (\propto frequency shift) (s)

Observed a strong Doppler profile and its derivative

- Observed a strong Doppler profile and its derivative
- Greatly improved pump power and beam size (intensity)

- Observed a strong Doppler profile and its derivative
- Greatly improved pump power and beam size (intensity)
- Set up or built much of the necessary infrastructure

- Observed a strong Doppler profile and its derivative
- Greatly improved pump power and beam size (intensity)
- Set up or built much of the necessary infrastructure
- Filled in personal learning gaps

- Observed a strong Doppler profile and its derivative
- Greatly improved pump power and beam size (intensity)
- Set up or built much of the necessary infrastructure
- Filled in personal learning gaps
- Burned and shocked myself many times

Acknowledgements

- My lab mates Katie, Dan, and Ben, for putting up with my incessant questions and teaching me an incredible amount
- Those from B063 for also answering many, many questions, providing invaluable help, and allowing me to continually steal borrow supplies
- Alan Jamison for his beautifully written and highly informative thesis as well as troubleshooting help via email
- Deep Gupta, Gray Rybka, and the INT REU program for continuing to facilitate these opportunities

Acknowledgements, cont.

The NSF for funding not only the INT REU program, but the overarching project as well

References

- 1. Jamison, Alan O. "Precision Interferometry with Bose-Einstein Condensates". Ph.D. thesis, University of Washington Seattle, 2014.
- 2. Foot, C. J. Atomic Physics. Oxford: Oxford UP, 2005. Print.
- 3. Gupta, S., Dieckmann, K., Hadzibabic, Z., Pritchard, D. E. 9/10/2002. Contrast Interferometry using Bose-Einstein Condensates to Measure h/m and α. *Physical Review Letters*. Vol. 89(14):1404-1-1404-4.
- Jayakumar, Anupriya, Plotkin-Swing, Benjamin, Jamison, Alan O., Gupta, Subhadeep. 7/10/2015. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions. *Review of Scientific Instruments*. Vol. 86(7):073115-1-073115-5.
- 5. http://newmansblogosphere.blogspot.com/2009/01/plainsboro-public-library-coinvortex.html