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Abstract

We seek to develop a low-contrast metasurface-based optical cavity that breaks degeneracy between

left- and right-handed polarization modes. Using birefringent materials, we propose such a cavity design,

and develop a formalism to determine left- and right-handed polarization eigenmodes. In this polarization

eigenbasis, the cavity operates as two decoupled resonators, each with a distinct path length. We discuss

our methodology for designing silicon nitride metasurface-based birefringent optical elements, and work

completed to facilitate the search for appropriate design parameters.

1 Introduction

Optical cavities form an important part of the optical
physicist’s toolbox. By augmenting the photon life-
time and light-matter interaction within the cavity
volume, cavities provide an e↵ective method for en-
hancing weakly coupled phenomena in AMO physics,
quantum optics, gravitational astronomy, and many
other disciplines.[1] Moreover, through the engineer-
ing of cavity geometry and materials, cavities may be
built to support specific longitudinal and transverse
modes, or to manipulate more exotic properties such
as spin and orbital angular momentum.[2]

Constructing cavities with explicitly polarization-
dependent behavior presents novel avenues for ex-
perimentation. High-finesse cavities demonstrating
“natural” linear birefringence (i.e. with a preferred
linear polarization axis, perhaps arising from small
symmetry-breaking defects in cavity components or
alignment) are commonly observed. However, pho-
tons are most naturally understood in terms of intrin-
sic spin, which may be correctly associated with the
circular polarization states of classical light.[3] Hence,
careful control of circular polarization is useful when
addressing problems fundamentally concerned with
photon spin. Applications useful to spintronics, such
as producing exiton-polaritons with defined spin, or
in quantum information science, where information
might be encoded in photon spin, require both such
control as well as e�cient spin-photon coupling, sug-
gesting the usefulness of a cavity sensitive to circular

polarization states.
We seek to develop a novel cavity whose behav-

ior is dependent on the circular polarization of the
enclosed light. In particular, we wish to design a cav-
ity with defined circular polarization modes, exhibit-
ing an arbitrary frequency splitting between left- and
right-handed modes within the cavity volume. We
are interested in pursuing a metasurface-based cav-
ity design to allow for tight control of polarization,
as well as to allow for miniaturization of the system.
We propose a cavity design and introduce a formalism
to determine the cavity polarization modes; we also
discuss our progress toward developing appropriate
metasurface-based optical elements.

2 Background

2.1 Jones calculus and birefringence

For a plane wave with momentum k = kẑ, we may
describe E(z, t) = E0e

i(kz�!t) as follows:

E(z, t) =

✓
E0xe

i�

x

E0ye
i�

y

◆
e

i(kz�!t) (1)

Note that H(z, t) is completely determined by E and
the wave impedance of the medium. Hence, the Jones
vector ✓

E0xe
i�

x

E0ye
i�

y

◆
(2)

fully characterizes the amplitude, phase, and polar-
ization of light, provided it comprises a transverse
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wave in a pure polarization state. Moreover, polar-
ization optical elements may be expressed as C2⇥2

Jones matrices operating on Jones vectors. For ex-
ample, a horizontal linear polarizer has the form

✓
1 0
0 0

◆
. (3)

Birefringent materials, such as quarter-wave plates
and half-wave plates, have di↵erent optical path
lengths for orthogonal “fast” and “slow” polarization
axes, hence impart a di↵erent phase on transmitted
light depending on linear polarization. For a quarter-
wave plate with a horizontal fast axis, vertically po-
larized light gains an additional ⇡/2 phase. The Jones
matrix representation is therefore

✓
1 0
0 i

◆
. (4)

Generally, for some birefringent material imposing
some phase di↵erence �, with a fast axis forming an
angle ✓ with horizontal, the Jones matrix is

R(✓)

✓
1 0
0 e

i�

◆
R

†(✓), (5)

where R(✓) is a rotation matrix.

2.2 Birefringent metasurfaces

As first demonstrated by Arbabi et al., meta-
surfaces constructed from quasi-periodic arrays of
subwavelength elliptical posts demonstrate tunable
birefringence.[4] Specifically, by adjusting the major
and minor diameters of the posts, specific phases
�

x

,�

y

may be imposed on transmitted or reflected
light. Hence, allowing a rotation of post axes by
some angle ✓, this platform allows for Jones trans-
formations of the form

M = R(✓)

✓
e

i�

x 0
0 e

i�

y

◆
R

†(✓). (6)

Arbabi et al. show that any symmetric, unitary Jones
matrix may be written in the form of (6). In fact, we
will show that symmetry and unitarity are necessary
conditions for any local transformation equivalent to
(6), i.e. that may be constructed using birefringent
posts. Let

D =

✓
e

i�

x 0
0 e

i�

y

◆
(7)

and note that D is unitary. We observe that

M

T = [R(✓)DR

†(✓)]T = R(✓)DR

†(✓) = M (8)

(this is true for any diagonal matrix D, even if not
unitary), and that

MM

† = M(MT )⇤ = MM

⇤ (9)

= R(✓)DD

⇤
R

†(✓) (10)

= I. (11)

Hence all transformations that may be constructed
using the birefringent post platform must be both
unitary and symmetric.

2.3 Circularly polarized light

Light with horizontal and vertical components ⇡/2
out of phase, i.e. with a normalized Jones vector

�± =
1p
2

✓
1
±i

◆
, (12)

is termed left (right)-hand circularly polarized. Im-
portantly, we will speak of right (left)-handed light
when the polarization rotates (counter)clockwise
viewed in the direction of propagation.

Because circular polarization is a quantity with
handedness, we expect some behavior under transfor-
mations: (i) handedness will not change under proper
rotations in R3, and (ii) handedness will reverse un-
der improper rotations in R3. Since handedness is
defined in the direction of propagation, (i) must be
true. In defense of (ii), consider a reflection across
the x, y-plane, z ! �z. Then

E(z, t) ! E(�z, t) =
1p
2

✓
1
±i

◆
E0e

i(�kz�!t)
. (13)

If we rotate (e.g. ⇡ about the x-axis) into the direc-
tion of propagation, we have

E(�z, t)
rot

=
1p
2

✓
1
⌥i

◆
E0e

i(kz�!t)
, (14)

and we observe �± ! �⌥.
Finally, we note that for incident light normal to

some reflective surface, there cannot be any preferred
transverse axis: any phase imposed by reflection must
be uniform. Hence, circularly polarized light normal
to a reflective surface changes handedness on reflec-

tion, in addition to gaining a uniform ⇡ phase shift;
the latter is a direct consequence of boundary condi-
tions at the surface and may be calculated from the
Fresnel conditions.

3 Proposed optical cavity

3.1 Spin-preserving mirror

It is useful to preserve circular polarization upon re-
flection within the cavity. Given the e↵ect of reflec-
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tion on Jones vectors, we may represent the change
of basis with the following matrix,

P =

✓
1 0
0 �1

◆
, (15)

noting that this transformation is identical to that of
a half-wave plate. Of course, (15) is not entirely ac-
curate, since our reflection certainly does not have a
preferred basis; nonetheless, up to a transverse rota-
tion (a freedom provided for circularly polarized light
if we allow a uniform phase shift), it su�ces.
To preserve the handedness of incident light, we

must add phase democratically (before and after the
reflection) to account for P . In practice, the solu-
tion comprises a quarter-wave plate Q directly before
the mirror: through one reflection, the light passes
through the quarter wave plate twice, hence the total
transformation is

QPQ =

✓
1 0
0 i

◆✓
1 0
0 �1

◆✓
1 0
0 i

◆
= I (16)

and the incident Jones vector is preserved.

3.2 Cavity design

We seek to use birefringent materials to impose
polarization-dependent cavity lengths, and hence
generate a circular polarization splitting within the
cavity volume.

Figure 1: Spin-selective Fabry-Perot cavity
with birefringent materials. Cavity comprises
of two quarter-wave plates, “� plates”, and mirrors.
Red lines indicate fast axes.

Our design employs (from the center outward) two
quarter-wave plates oriented with fast axes at x̂, ŷ
respectively, two wave plates with path di↵erence �

both oriented with fast axes at ⇡/4 with respect to x̂,
and two mirrors, forming a birefringent Fabry-Perot
cavity with a longitudinal axis parallel to ẑ; see Fig. 1.
We observe several symmetries consistent with sup-
porting circularly polarized modes, i.e. the same as
those identified in Section 2.3. Specifically, we note

(a)

(b)

Figure 2: Cavity symmetries. (a) ⇡ rotation
about fast axis of � plates. (b) Reflection through
z axis.

that the cavity is self-similar (up to a transverse rota-
tion) after a rotation of ⇡ about any transverse axis,
and that the “orientation” of the cavity reverses af-
ter a reflection through the z-axis (see Fig. 2). With
some minor qualification, these symmetries support
circularly polarized modes in the interior of the cav-
ity.

3.3 Operator description of cavity

We seek to determine the modes of the cavity, as well
as determine the round trip optical path length expe-
rienced by each mode. Jones calculus fails to address
path length beyond a relative phase, hence we seek
to develop a formalism to address both polarization
and mode function.

For simplicity, consider the cavity in Fig. 1 with
planar mirrors. In this case, the cavity is entirely de-
termined by propagation through free-space and the
birefringent materials. Let |u(z) ̂i be a state vector
with a mode function u(r, z) and transverse polariza-
tion vector ̂. We define a propagation operator Û(z)
such that

(i) |u(z) ̂i = Û(z) |u(0) ̂i.

(ii) Û(0) = 1. Follows from (i).

(iii) Û(z1)Û(z2) = Û(z1 + z2). Propagation should
be additive.

(iv) [Û(z1), Û(z2)] = 0. Follows from (iii).
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Figure 3: Cavity lengths. Propagation distances
are labeled ↵, �, and �, where the latter two are im-
posed orthogonal to the fast axis of their respective
elements.

It is also convenient to allow for a change of ba-
sis via a local rotation operator. First we note that
if two transverse polarizations ̂, ⌫̂ are non-parallel,
then some state |u1(z) ̂i+ |u2(z) ⌫̂i e↵ectively com-
prises a vector field |u(z)i. For an orthonormal po-
larization basis ı̂, |̂, we denote

|u(z)i =
✓
u1(z)
u2(z)

◆
:= |u1(z) ı̂i+ |u2(z) |̂i . (17)

Then we may define the expected local rotation op-
erator,

R(✓) :=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
, (18)

whereby at each point (r, z), the field is rotated by ✓

into a new orthogonal polarization basis.
Finally we define propagation in some birefringent

region aligned with our polarization basis

Q̂(z
i

, z

j

) =

✓
Û(z

i

) 0
0 Û(z

j

)

◆
. (19)

Measured from the center plane, the cavity roundtrip
operator is as follows:

T̂ = Q̂(↵+ �,↵)R
⇣
⇡

4

⌘
Q̂(2�, 0)R†

⇣
⇡

4

⌘

Q̂(↵+ �,↵+ �)R
⇣
⇡

4

⌘
Q̂(2�, 0)R†

⇣
⇡

4

⌘

Q̂(↵,↵+ �)

(20)

where ↵ is the distance between the center of the
cavity and the quarter-wave plates, � = �/4, and �

is the additional path length imposed by the birefrin-
gent plates (other distances are assumed to be zero;
see Fig. 3). Note that the operator for the � plate
is doubled for each pass before and after the mirror,
and that it is rotated transversely by ⇡/4.
To find the polarization modes, we seek the eigen-

modes of the roundtrip operator. Expanding (20), we

find

T̂ =
1

2

⇣
Û(4↵+ 2�) + Û(4↵+ 4� + 2�)

⌘
I2 +

1

2
Û(4↵)

⇣
Û(4�)� 1

⌘✓
0 Û(3�)

Û(�) 0

◆ (21)

Hence, we find (normalized) eigenmodes of

|u±i =
1p
2

✓
±Û(�)

1

◆
|u(0)i (22)

with eigenvalues of

1

2
Û(4↵+ 2�)

⇣
1 + Û(4�)±

⇣
Û(4�)� 1

⌘⌘
. (23)

Observe that for � = �/4, the eigenmodes in (22) are
exactly the left and right circular polarization states
of light. Moreover, for each polarization mode, the
eigenvalue is exactly

Û+ = Û(4↵+ 4� + 2�), Û� = Û(4↵+ 2�), (24)

i.e. some propagation through distinct round-trip
path lengths. In e↵ect, a polarization mode resonates
in one of two decoupled Fabry-Perot cavities, each of
di↵erent length. If we were to explicitly define Û(z),
then we could solve |u±(0)i as eigenmodes of Û±;
see [5] for a discussion of the propagation operator
in the paraxial limit. Alternatively, we can view (24)
as stroboscopic pictures of Hamiltonian operators, an
approach which has been shown e↵ective by Sommer
and Simon for solving the eigenmodes of a variety of
cavity geometries.[6] Most importantly, for appropri-
ate values of �, we may expect di↵erent wavelengths
for each polarization mode, e↵ectively splitting the
modes by circular polarization.

It is relevant to note that if both modes are to
be circularly polarized, it is necessary that � = �/4
for both wavelengths; else at least one mode will be
slightly elliptical. Given the chromatic sensitivity of
metasurface optics, this problem is perhaps a small
detail in the larger engineering challenge of producing
a metasurface cavity capable of supporting multiple
non-degenerate modes.

4 Metasurface-based optics

4.1 A phase picture of optical ele-
ments

Metasurfaces may alter both the phase and (by con-
trolling transmission and reflection) amplitude of in-
cident light. In practice, we are concerned with
manipulating the phase through metasurface optics;
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through the careful design of metasurface elements,
we seek to impose a “phase profile” on transmitted
or reflected light. To this end, it is practical to de-
scribe various optical elements in terms of their e↵ect
on phase, rather than appeal to the geometric or ray
optics perspective.
In the phase picture, a lens with some focal length

f is designed to cause the constructive interference
of an incident plane wave at a point a distance f

from the lens. Hence, we can calculate an appropriate
phase profile:

�(r) = �k

p
r2 + f

2
, (25)

where �(r) is the phase imparted to some wavefront
incident to the lens at position r. If we allow for
birefringence, then the phase profiles for quarter- and
half-wave plates are as expected:

QWP: �

x

=
⇡

2
; �

y

= 0 (26)

HWP: �

x

= ⇡; �

y

= 0 (27)

It is often possible to “sum” phase profiles of multi-
ple classical elements into one metasurface device. In
the case of our cavity design, this proves impossible
if our metasurface is comprised of locally birefringent
posts. Recall from Section 2.2 that any Jones trans-
formation that may be constructed using this plat-
form must be both unitary and symmetric. Of course,
at least two metasurface elements must be included
in our cavity, since the desirable modes would ex-
ist within the cavity volume, between these elements.
Consider the Jones matrices for a quarter-wave plate
and the rotated � plate. The composed transforma-
tion,

R(⇡/4)

✓
1 0
0 e

i�

◆
R

†(⇡/4)

✓
1 0
0 i

◆
=

1

2

✓
1 + e

i�

i

�
1� e

i�

�

1� e

i�

i

�
1 + e

i�

�
◆
,

(28)

is not symmetric, hence requires exactly two meta-
surfaces, and a total of four for the cavity as a whole.

4.2 Simulation and parameter search

Arbabi et al. have implemented arrays of elliptical,
subwavelength high-contrast posts to exhibit bire-
fringence. The group claims the posts act as trun-
cated “weakly coupled low-quality factor resonators”,
and thereby impart a phase on incident light.[4] Our
group seeks to implement this metasurface platform
using silicon nitride, a low-contrast material, for
two principle reasons: (a) low-contrast devices are
less lossy than their high-contrast counterparts, and

(b) nitride metasurfaces are compatible with exist-
ing CMOS fabrication infrastructure. However, we
have found some suggestion that the fields confined
to neighboring posts may be more strongly coupled in
the low-contrast case. Hence, a “weakly-coupled res-
onator” picture, though perhaps not well-developed
in its own right, may be even less adequate in mod-
eling the behavior of low-contrast metasurfaces.

In practice, engineering a phase profile into a meta-
surface design consists of mapping local phase to the
relevant post parameters. We determine this map-
ping with a brute-force approach: we simulate post
behavior over a large space of relevant parameters
and determine the resulting phase and amplitude;
given some desired phase, we then search for parame-
ters with minimum phase error and maximum ampli-
tude. For a birefringent metasurface using elliptical
posts, the optimized parameters include:

• major and minor diameter

• post thickness (height)

• lattice constant

We assume that posts are weakly-coupled, and for
each set of parameters use S4, a Rigorous Coupled-
Wave Analysis (RCWA) solver, to determine the im-
posed phase and amplitude for both horizontal and
vertical polarizations.[7] It is relevant to note that
RCWA assumes a periodic array of identical posts,
which may not e↵ectively model post behavior in a
non-uniform array if posts are not weakly coupled,
as noted above. For some phase profile and lattice
constant/post thickness parameters, we first optimize
post diameter; we then determine the optimal lat-
tice constant and post thickness, noting that these
parameters must be uniform due to fabrication con-
siderations (see Fig. 4). Finally, these parameters
are used to construct Finite-Di↵erence Time-Domain
(FDTD) simulations of the entire metasurface device.
Two completed metasurface devices (fabricated using
electron-beam lithography) are shown in Fig. 5.

A large portion of my work concerned optimizing
and extending code for post simulation and param-
eter search. Using the S4 package, I wrote code to
iterate the RCWA post simulation over all parame-
ters listed above; I also developed scripts to e�ciently
search the parameter space to map coordinates to a
given phase profile. This code was computationally
expensive, hence the above scripts were parallelized
and made available for use on Hyak, the University
of Washington supercomputing cluster.
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Figure 4: Optimization results. Optimal phase
and amplitude selected for a lens with polarization-
dependent focal length.

5 Conclusion

We propose a design for a spin-selective optical cavity,
utilizing linearly birefringent materials to impose dif-
ferent optical path lengths for left- and right-handed
polarization modes. The existence of circularly po-
larized modes within the cavity volume is supported
by requisite cavity symmetries, namely invariance un-
der certain rotations and a lack of mirror symmetry.
To determine the polarization modes within the cav-
ity, we introduce an operator formalism in terms of
propagation matrices operating on a vectorized mode
function. With this methodology, for a planar bire-
fringent Fabry-Perot cavity we determine cavity po-
larization eigenmodes corresponding to the left- and
right-handed polarization states of light, each with a
distinct path length and hence (for an appropriate pa-
rameter � of birefringence) a spin-selective splitting
in the mode spectrum.
It remains to explicitly calculate eigenmodes for

more complicated cavity geometries; however, since
the cavity appears to operate as two distinct, uncou-
pled resonators in the polarization eigenbasis, exist-
ing methods for such a calculation seem promising.
We discuss progress toward constructing low-

contrast metasurface-based optical elements to real-
ize the cavity design. Our methodology presently
consists of a brute-force parameter search for an opti-
mal metasurface design; this task is computationally
intensive and requires parallelized code and signifi-
cant computational resources. Future work in the
group may seek to develop a more robust model of the

local and semi-local behavior of metasurface posts, ei-
ther in the resonator picture or in some other perspec-
tive. Once appropriate parameters are established,
we seek to simulate the cavity using FDTD methods,
and then work toward a fabrication and characteri-
zation of the cavity.
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Figure 5: Low-contrast metasurface devices. SEM. (a) lens, (b) vortex beam generator. Note that
these devices are not birefringent.[8]
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