27 July, 2015

Theory, Interpretation and Applications of X-ray Spectra*

J. J. Rehr et al.

A theoretical horror story

Starring

Fernando Vila & Anatoly Frenkel with J. Kas, S. Bare & S. Kelly Directed by J. J. Rehr

Part I: Application

Operando theory of nanocatalysts:

Structure, thermal properties, catalytic activity

Pt Clusters on γ -Al₂O₃

Theoretical Challenge: Anomalous properties* of $Pt_{10}/\gamma Al_2O_3$

Pt-Pt nn
 Negative Thermal Expansion
 & Bond expansion in H₂

Anomalous Pt-Pt disorder

NOT bulk-like !

*J.H. Kang, L. D. Menard, R. G. Nuzzo, and A. I. Frenkel. JACS 2006, *128*, 12068

More Anomalous properties * $Pt_{10}/\gamma Al_2O_3$

- Increased edge intensity
- Redshift of XANES with increasing T
- Standard analysis fails!

*J.H. Kang, L. D. Menard, R. G. Nuzzo, and A. I. Frenkel. JACS 2006, *128*, 12068

Challenge: multiple length and time-scales

What's going on?

Blob footprint @ 573 K

PHYSICAL REVIEW B 78, 121404(R) (2008)

Dynamic structure in supported Pt nanoclusters: Real-time density functional theory and x-ray spectroscopy simulations

F. Vila,¹ J. J. Rehr,^{1,*} J. Kas,¹ R. G. Nuzzo,² and A. I. Frenkel³

¹Department of Physics, University of Washington, Seattle, Washington 98195, USA ²Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA ³Department of Physics, Yeshiva University, New York, New York 10016, USA (Received 24 July 2008; published 11 September 2008)

Negative Thermal Expansion Explained

High Pt-Pt Disorder Explained

Increased intensity and redshift explained

Dynamic structural disorder

Need Operando AIMD dynamics* to reproduce experiment *F. Vila, J. J. Rehr, J. Kas, R. G. Nuzzo, and A. I. Frenkel, Phys. Rev. B **78**, 121404(R), 2008 7 April 2014

Volume 140 Number 13

AIP The Journal of Chemical Physics

Conclusion

Must consider dynamic structure to understand the nano-scale

THE JOURNAL OF CHEMICAL PHYSICS 140, 134701 (2014)

Dynamic structural disorder in supported nanoscale catalysts

J. J. Rehr and F. D. Vila Department of Physics, University of Washington, Seattle, Washington 98195, USA

Part II: Theory and Interpretation of X-ray Spectra

 GOALS: *ab initio* theory Accuracy ~ experiment

• TALK:

I. Introduction History
II. Real-space Green's function theory FEFF codes
III. Improvements XAS, Optical spectra, etc, ...

GOAL Theoretical X-rayBeamline

$\mu \propto -rac{1}{\pi} \operatorname{Im} \left\langle i \left| d \ G(\omega) d^{\dagger} \right| i ight angle$

Questions we want to answer: What are the *structure* and *dynamics* ? and other *physical properties* ? of complex systems ?

 $Cu(NH_3)_4SO_4H_2O$

 Pt/γ - Al_2O_3

Zirconium Tungstate

Experiment: X-ray Spectroscopy

? What's in a spectrum ?

Historical interpretation of EXAFS*

*Stern Sayers Lytle, UW 1971

BUT need to calibrate experiment with "Standard"

"Can you write an equation

for the theory?"

P.A.M. Dirac (to R. Feynman)

*JJR, RC Albers, CR Natoli, EA Stern, Phys Rev B34, 4350 (1986)

BUT: need many parameters !

Question: Can the EXAFS parameters

$$k f_{eff} \Phi_k \sigma^2 \lambda_k S_0^2$$

be calculated theoretically ?

"I always thought it was easier to measure x-ray absorption than to calculate it."

Hans Bethe ca 1980

Gotcha: Standard theory fails!

Why?

Fermi Golden Rule for XAS $\mu(\omega)$

$$\mu(\omega) \sim \Sigma_f |\langle \psi_f | d | \psi_i \rangle|^2 \delta(E_f - E_i - \hbar \omega)$$

Too many quasi-particle final states ψ_f $\left[\frac{p^2}{2m} + V'_{coul} + \Sigma(E)\right]\psi_f = E_f\psi_f$ Final state rule $V'_{coul} = V_{coul} + V_{core-hole}$ Non-hermitian self-energy $\Sigma(E)$ (replaces DFT Vxc)

Answer 2 (JJR)* "Now** it is often easier to calculate x-ray absorption than to measure it"

(**if structure is known)

Theoretical X-ray Absorption Fine Structure Standards

J. J. Rehr,*,[†] J. Mustre de Leon,^{†,‡} S. I. Zabinsky,[†] and R. C. Albers[§]

Contribution from the Department of Physics, FM-15, University of Washington, Seattle, Washington 98195, and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545. Received November 13, 1990

Abstract: Theoretical X-ray absorption fine structure (XAFS) standards are developed for arbitrary pairs of atoms through the periodic table ($Z \le 94$). These standard XAFS spectra are obtained from *ab initio* single-scattering XAFS calculatio using an automated code, FEFF, which takes into account the most important features in current theories: (i) an exact treatme of curved-wave effects; (ii) approximate molecular potentials derived from relativistic atoms, (iii) a complex, energy-depend self-energy; (iv) a well defined energy reference. FEFF also yields tables of XAFS phases and amplitudes as well as mean-fi paths. Sample results are presented and compared with experimental results and with earlier work. We find that these theoreti standards are competitive with experimental standards, permitting XAFS analysis at lower wavenumbers and yielding distar determinations typically better than 0.02 Å and coordination numbers typically better than 20%. These standards also prov theoretical tests of chemical transferability in XAFS.

** 10 years later - JACS 113, 5136 (1991)

Reviews of Modern Physics

THEORETICAL APPROACHES TO X-RAY ABSORPTION FINE STRUCTURE MEMBER SUBSCR PTION COPY Library or Other Institutions Use Prohibited Until 2005 How? (10 more years)

Quantitative

XAS theory

FEFF

J. J. Rehr & R.C. Albers Rev. Mod. Phys. **72**, 621 (2000)

http://leonardo.phys.washington.edu/feff/

Theoretical Tricks: Green's functions

- Real-space Green's function Theory
- Mean free path, Self-energy Σ
- Screened core-hole

Real-space Green's Function Theory

Golden rule via Wave Functions

 $\mu(E) \sim \Sigma_f |\langle i | \hat{\epsilon} \cdot \mathbf{r} | f \rangle|^2 \delta(E - E_f)$

Paradigm shift

Golden rule via Green's Functions G = $1/(E - h - \Sigma)$

$$\mu(E) \sim -\frac{1}{\pi} \operatorname{Im} \langle \mathbf{i} | \hat{\epsilon} \cdot \mathbf{r}' \operatorname{G}(\mathbf{r}', \mathbf{r}, \mathbf{E}) \hat{\epsilon} \cdot \mathbf{r} | \mathbf{i} \rangle$$

No sums over final states !

What's a Green's function?

Wave function in QM $H \Psi = E \Psi$

 $\Psi(r)$ = Amplitude to find particle at r

Green's function $(H - E) G = -\delta(r-r')$

G(r,r',E) = aka Propagator

= Amplitude to go from r to r'

Multiple-scattering theory of G

MS

Ingredients:

 G_0 free propagators *t*-matrix = $e^{i \delta_l} sin \delta_l \delta_{RR'} \delta_{ll'}$

Implementation: FMS FEFF code

PHYSICAL REVIEW B

VOLUME 58, NUMBER 12

15 SEPTEMBER 1998-II

Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure

A. L. Ankudinov MST-11, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

B. Ravel Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

J. J. Rehr Department of Physics, University of Washington, Seattle, Washington 98195-1560

S. D. Conradson MST-11, Los Alamos National Laboratory, Los Alamos, New Mexic

89 atom cluster

Core-hole, SCF potentials Essential!

Example: Pt EXAFS – MS path expansion

*Theoretical phases → accurate distances to < 0.01 Å

Example: Pt XANES full multiple-scattering Pt L₃-edge Pt L₂-edge (S. Bare, UOP)

- Good agreement: *Relativistic* FEFF8 code reproduces all spectral features, *including absence of white line at L₂-edge*.
- Self-consistency essential: position of Fermi level strongly affects white line intensity.

Green's Functions and Parallel Computation

PHYSICAL REVIEW B, VOLUME 65, 104107

Parallel calculation of electron multiple scattering using Lanczos algorithms

A. L. Ankudinov,¹ C. E. Bouldin,² J. J. Rehr,¹ J. Sims,² and H. Hung²

¹Department of Physics, University of Washington, Seattle, Washington 98195

²National Institute of Standards and Technology, Gaithersburg, Maryland 20899

Interpretation of XANES : Excited State Electronic Structure

Cu pDOS vs XAS and XES

APRIL 7, 2011 VOLUME 115 NUMBER 13 pubs.acs.org/JPCC

THE JOURNAL OF PHYSICAL CHEMISTRY

NANOMATERIALS, INTERFACES, HARD MATTER

Application EXAFS analyis of Re-catalysts

Simon R. Bare, et al., J. Phys. Chem. 115, 5740 (2011)

Application: Pt catalysts Finite Temp, Real-time DFT/MD calculations of supported Pt_nano-catalysts*

 $Pt_{10}/\gamma - Al_2O_3$

What's Next: Even better theory

- A. Other spectra: NIXS, RIXS, Optical, Compton
- B. Ab initio mean free paths λ_k
- C. Ab initio Debye Waller factors σ^2
- D. Multi-electron excitations S_0^2

(10 more years)

Quantitative XAS

FEFF9

JJR et al., Comptes Rendus Physique **10**, 548 (2009)

in Theoretical Spectroscopy L. Reining (*Ed*) (2009)

Application: Optical Spectra

The Rediscovery of the 'French Blue' diamond

▶ FIG. 2: Optical spectroscopy for the 'Hope' diamond (courtesy of Smithsonian Institution, Washington, DC, USA) together with a computer spectrum assuming a boron atom inside a 69-carbon atom duster.

Europhysics News 43, 1 (2012)

Optical Absorption of N-Doped Diamond

Presentation by: Winnie H. Liang INT REU: University of Washington 2014

Debye-Waller factors σ^2 in Zr tungstate

Mean square vibration amplitudes

+ Easy to use GUI for everyone - JFEFF

New Developments in FEFF: FEFF9 and JFEFF

Proceedings of XAFS 15 in press 2012

Kevin Jorissen and John J. Rehr

Department of Physics, University of Washington, Seattle, WA 98195, USA

kevinjorissen.pdx@gmail.com

Abstract. The ab initio core-level spectroscopy code FEFF9 has seen many new developments in recent years. We describe the addition of new physics and new features designed to calculate more accurate spectra. We also present the user-friendly Java-based GUI JFEFF that simplifies running FEFF on platforms ranging from personal computers to high-performance parallel systems and virtual cloud platforms.

Figure 1 The JFEFF GUI for the FEFF9 code. The main JFEFF window is shown in the centre. Around it

Acknowledgments

Rehr Group

- J. Kas (UW)
- F. Vila (UW)
- J. Vinson (UW)
- K. Jorissen (UW)
- T. Ahmed (UW)
- S. Williams
- E. Clevac

Key collaborators

E. Shirley (NIST) A. Soininen (U. Helsinki) A.L. Ankudinov (STM) R.C. Albers (Los Alamos))

Supported by DOE-BES

That's all folks!