To Be or Not To Be: Majorana Neutrinos, Grand Unification, and the Existence of the Universe

Jason Detwiler Assistant Professor, University of Washington Aug. 3, 2015

The Neutrino

Meitner and Hahn (1911):

²¹⁰Bi

("Radium E")

The Neutrino

Meitner and Hahn (1911):

The Neutrino

The Neutrino Possible interactions: Enrico Fermi (1934): • <u>EM</u> "Little neutral one" Strong Weak • (Gravity) ²¹⁰Po **e**⁻

Nuclear Reactor

The Sun

Scintillator (C_xH_y)

Cleaning fluid (Cl)

+ Ar detector

V

Neutrino Handedness

Neutrino Flavors

Standard Model Neutrinos

- q = 0
- color = 0
- spin = $\frac{1}{2}$
- 3 flavors (e, μ, τ)
- left-handed V, right-handed \overline{V}
- $m_{\nu} < 2 eV$ (m_e / 250000)

 $m_v = 0?$

Neutrino Oscillation

Neutrino Oscillation

Neutrino Oscillation

Jason Detwiler

English translation: Soryushiron Kenkyu 63, 149 (1981).

Dirac vs Majorana V

→ produces l^-

→ produces ℓ +

Grand Unification

Grand Unification

Matter-Antimatter Asymmetry

The Big Bang

The Universe Today

matter + antimatter

matter only

- Interactions out of thermal equilibrium
- C (charge) and CP (charge-parity) violation
- Baryon number violation (baryogenesis)

Leptogenesis

 Decay of heavy Majorana neutrino (N) into SM leptons (*l*[±]) and Higgs (H):

Leptogenesis

 Decay of heavy Majorana neutrino (N) into SM leptons (*l*[±]) and Higgs (H):

- CP violation in V sector could give these different branching ratios
- SM processes could convert L to B: baryogenesis!
- Majorana neutrinos could be the reason we exist!

A. Schubert, H. Murayama

Claimed Observation

Claimed Observation

A. Schubert, H. Murayama

A. Schubert, H. Murayama

Testing the Inverted Hierarchy

0vββ Experiments

Collaboration	Isotope	Technique	mass (0vββ isotope)	Status
AMoRE	Mo-100	CaMoO4 bolometers (+ scint.)	5	Construction
CANDLES	Ca-48	305 kg CaF2 crystals - liq. scint	0.3 kg	Operating
CARVEL	Ca-48	⁴⁸ CaWO ₄ crystal scint.	16 kg	R&D
GERDA I	Ge-76	Ge diodes in LAr	15 kg	Operating
GERDA II	Ge-76	Point contact Ge in LAr	20 kg	Construction
MAJORANA DEMONSTRATOR	Ge-76	Point contact Ge in Lead	26 kg	Construction
1TGe (GERDA & MAJORANA)	Ge-76	Best of GERDA + MJD	~tonne	R&D
NEMO3	Mo-100 Se-82	Foils with tracking	6.9 kg 0.9 kg	Complete
SuperNEMO Demonstrator	Se-82	Foils with tracking	7 kg	Construction
SuperNEMO	Se-82	Foils with tracking	100 kg	R&D
MOON	Mo-100	Mo sheets	200 kg	R&D
CAMEO	Cd-116	CdWO ₄ crystals	21 kg	R&D
COBRA	Cd-116, Te-130	CdZnTe detectors	10 kg	Operating / Construction
CUORICINO	Te-130	TeO ₂ Bolometer	11 kg	Complete
CUORE-0	Te-130	TeO ₂ Bolometer	11 kg	Operating
CUORE	Te-130	TeO ₂ Bolometer	206 kg	Construction
SNO+	Te-130	0.3% natTe in liquid scint.	800 kg	Construction
KamLAND-ZEN	Xe-136	2.7% in liquid scint.	370 kg	Operating
KamLAND2-ZEN	Xe-136	2.7% in liquid scint.	~tonne	R&D
NEXT-100	Xe-136	High pressure Xe TPC	10 kg	Construction
EXO-200	Xe-136	Xe liquid TPC	160 kg	Operating
nEXO	Xe-136	Xe liquid TPC	5 tonnes	R&D
DCBA	Nd-150	Nd foils & tracking chambers	30 kg	R&D

Construction

Operating

Complete

GERDA

MAJORANA

CANDLES

From J. F. Wilkerson

Germanium Detectors

Germanium Detectors

Hole v_{drift} (mm/ns) w/ paths, isochrones

Germanium Detectors

The MAJORANA DEMONSTRATOR

- Goal: x100 reduction in background vs. previous efforts using clean materials, hit patterns, pulse-shapes
- Located at the 4850' level of Sanford Underground Laboratory in SD
- Modules:
 - Prototype: 3 strings ^{nat}Ge (completed!)
 - Module I: ~20 kg ^{enr}Ge (running now!)
 - Module 2: ~10 kg ^{enr}Ge + ~10 kg ^{nat}Ge (under construction!)

Summary

- Majorana neutrinos may give us insights into Grand Unification and the Matter-Antimatter Asymmetry of the Universe.
- 0νββ experiments are the only known way to probe this aspect of the neutrino. Definitive tests of inverted hierarchy Majorana neutrinos are within reach.

- L is "accidentally" conserved in the in the SM
- B, L often connected in GUTs

The Majorana Equation

Schrodinger: $i\frac{\partial}{\partial t}\Psi + \frac{1}{2m}\nabla^2\Psi = 0$

Dirac:

 $-i\gamma^{\mu}\partial_{\mu}\psi + m\psi = 0$

Majorana:

 $\sigma^{\mu}_{\pm}\partial_{\mu}\chi \pm m\sigma_{2}\chi^{*} = 0$

E. Majorana, Il Nuovo Cimento 14, 171 (1937). English translation: Soryushiron Kenkyu 63, 149 (1981).

Planck 2015

95%, Planck TT+lowP+lensing+ext.

Combination with v Oscillation

- Boost so that π^+ beam faster than v_L from decay at rest: requires $E_{\pi} > 4$ PeV (n.b. LHC = 14 TeV)
- Fraction of decays with helicity flipped: <10⁻¹⁵
- "Since L-violation comes only from Majorana ∨ masses, any attempt to observe it will be at the mercy of the ∨ masses."
 B. Kayser

No a priori isotope preference

Jason Detwiler

R.G.H. Robertson, Mod. Phys. Lett. A 28, 1350021 (2013).