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This paper describes the development of a distribution of average magnetic fields experienced by
trapped electrons as it relates to the creation of decay electron energy spectra from measurements
of their cyclotron frequencies. Two trapping magnetic field configurations are explored, being a
truncated harmonic and a magnetic bottle, and the change in trapping efficiency with variations in
trap dimensions is considered for the magnetic bottle. Determining the likely average magnetic field
with which a trapped electron interacts is beneficial in understanding the process of nuclear beta
decay and in exploring questions about nuclear beta decay that could lead to new physics.

I. INTRODUCTION

Project 8, a neutrino mass experiment at the Uni-
versity of Washington, aims to infer the mass of the
neutrino from the shape of the energy spectrum for
decay electrons from tritium beta decay. Project 8
is known for having made the first measurement of
single-electron cyclotron radiation with the experi-
mental set-up pictured in Figure I.1[2].

FIG. I.1. Project 8 Set-up

The apparatus includes a small volume of gas
contained in what is known as the cell[1]. This gas is
krypton, a byproduct of the decay of rubidium. As
byproducts of this decay as well, electrons within the
cell are affected by the presence of a magnetic field.
A superconducting magnet provides a main field of
approximately 1-T directed along the vertical[1]. A
small copper coil introduces an inhomogeneous mag-
netic field within the cell. This inhomogeneity in the

field ( ~B) causes a fraction of the electrons to feel a
force directed toward the center of the cell according
to

~F = ~∇
(
~µ · ~B

)
, (I.1)

where ~µ is the electron’s orbital magnetic moment.
The electrons subjected to this force are trapped.
The cyclotron frequency (fγ) for each of these
trapped electrons is determined by the following for-

mula:

fγ =
eB

2πγm
, (I.2)

where e is the electron charge, B the magnetic field
directed perpendicularly to the electron’s cyclotron
orbit, m the electron mass, and γ the Lorentz factor.
The Lorentz factor (γ) is a function of the electron’s
kinetic energy, with formula:

γ =

(
1 +

K

mc2

)
, (I.3)

where K is the electron’s kinetic energy and m its
mass. The electrons trapped within the cell will radi-
ate power and lose kinetic energy over time. Signals
from this power radiation travel along a 1-m length
of waveguide to receivers and digitizers for analy-
sis. Analysis of these signals leads to the creation of
frequency spectra for single-electron events.

Equation I.3 indicates that the value of γ for an
electron losing kinetic energy will decrease. When γ
decreases, Equation I.2 indicates that the cyclotron
frequency of the electron increases. Thus, the fre-
quency spectrum for a single electron will indicate
a linear relationship between frequency and time.
From each frequency spectrum for a single electron
can be extracted its approximate initial emission fre-
quency. The initial emission frequencies for many
electrons are used to create an energy spectrum for
the decay electrons in total with the relationship be-
tween frequency and kinetic energy given by Equa-
tion I.2 in mind. The goal of Project 8 maintains
that the shape of this spectrum will elucidate the
mass of the neutrino.

II. MOTIVATION

According to the formula given by Equation I.2, the
cyclotron frequency for a given electron is a function
of both its kinetic energy and the magnetic field with
which it interacts. Given the random nature of de-
cay, a trapped electron may originate with any ini-
tial position within the dimensions of the trap; the
initial angle of its momentum vector with respect



2

FIG. I.2. Three Oscillation Types

to the magnetic field can assume any value within
a range of trapping angles based on its initial po-
sition. There are three oscillation types pertinent
to the trapped electron as shown in Figure I.2: cy-
clotron oscillation, z-oscillation, and magnetron os-
cillation. Cyclotron frequencies are on the order of
20 GHz. Z-oscillation is on the order of MHz, and
frequency of the magnetron motion follows on the
order of kHz. Thus, there lies difficulty in determin-
ing precisely the magnetic field with which a trapped
electron interacts. However, it is possible to calcu-
late a distribution of the average magnetic fields (B̄)
for trapped electrons, which is one task of this re-
search project.

With this distribution, the average magnetic
field that an electron is likely to experience can be
determined and incorporated into energy calcula-
tions. Solving Equation I.2 for γ gives

γ =
eB

2πfγm
. (II.1)

Equation II.1 shows that with the initial emis-
sion frequency measurement (fγ) as found according
to the methods described in Section I for a given elec-
tron and the average value of the average magnetic
field (B̄) experienced by that electron, the electron’s
γ is obtainable. Then, solving Equation I.3 gives the
following

K = (γ − 1)mc2 (II.2)
for the electron’s kinetic energy (K). Utilizing meth-
ods of calculating electron energies such as this one
makes evident the possibility of discovering new
physics in relation to nuclear decay.

III. METHODS OF CALCULATION

A magnetic bottle is the magnetic field configuration
applicable to Project 8. This field configuration re-

sults from an arrangement of two coils running cur-
rent in the same direction; the field is stronger at the
ends of this configuration than at the center. The
following section uses first a simpler model for a field
configuration to display many of the properties be-
hind electron trapping.

A. On-Axis Calculation

The first type of magnetic field configuration exam-
ined is that of a trucated quadratic trap, pictured
below:

FIG. III.1. Truncated Quadratic Field

The field equation corresponding to a trap of
this type is as follows:

~B = B0

(
1 +

z2

L2

)
ẑ, (III.1)

where z is the position at which a decay electron
originates along the z-axis, B0 is the main magnetic
field of 1-T, and L is a parameter used to control
the depth of the trap. For this first calculation, L is
set at 10-cm. The maximum extent of the magnetic
field is set at 1.01-T, and the maximum z-extent of
the trap is set at 1.0-cm.

The electrons trapped in this field configuration
each possess a magnetic moment that can be de-
termined classically. Approximating the electron’s
motion as that of a loop of circulating current in a
magnetic field directed along z, its magnetic moment
~µ is

~µ =
−evR

2
ẑ,

where e is the electron charge, v the electron’s tan-
gential velocity along its cyclotron orbit, and R the
radius of that orbit. The magnetic moment can be
rewritten in terms of the kinetic energy in the trans-
verse direction (E⊥). This, along with the idea that
the radius of the cyclotron orbit R = γmv

eB for mass
m and charge e, gives the following:

~µ =
−E⊥
B

ẑ.

This equation for the magnetic moment can be uti-
lized to determine the force an electron experiences
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due to inhomogeneity in the magnetic field and the
consequential equation of motion for the electron.

1. Force and Equation of Motion Along z

The electron is subjected to a force (~F ) based on its
magnetic moment ~µ and the magnetic field given by
Equation III.1 according to what follows:

Fz = ∇z
(
~µ · ~B

)
=
−E⊥
B

B0

(
2z

L2

)
ẑ. (III.2)

From this force and according to Newton’s second
law, we establish that the angular frequency of os-

cillation ω =
√(

E⊥
mB

)
B0

(
2
L2

)
. Since the force on

the trapped electron is proportional to its initial po-
sition (z), we also give, based on Newton’s second
law, the equation of position the form:

~z = zmax sinωt ẑ. (III.3)
In this functional form, zmax is the maximum z-
position attainable by a trapped electron with initial
position z and initial angle φ between its momentum
vector and the magnetic field.

2. Finding zmax and Time-averaged Magnetic Field
(B̄)

An important invariant to this series of calculations
is the magnetic moment ~µ. Since ~µ is conserved, the
following relationship holds and lends itself to solv-
ing for the trapped electron’s maximum z-position,
zmax. When the electron’s momentum vector is at
angle φmax = 90◦, the electron stops moving along z
and has therefore reached its maximum z-position.
The following array of equations depicts this sce-
nario:

sin2 φ

sin2 φmax

=
B(z)

B(zmax)

sin2 φ =
B0(1 + z2

L2 )

B0(1 +
z2
max

L2 )

zmax =
√

csc2 φ(L2 + z2)− L2. (III.4)
The value of the time-averaged magnetic field

(B̄) will depend on the z-motion of the particle, de-
scribed by Equation III.3 and with functional form
for zmax given by Equation III.4. With these con-
siderations and by averaging the field Equation III.1
over a period of the electron’s oscillation (T ), the
resulting B̄ is given by

B̄ =
1

T

∫ T

0

B0

(
1 +

z2
max sin2 ωt

L2

)
dt ẑ

= B0

[
1 +

z2
max

2L2

]
ẑ. (III.5)

This functional form for B̄ indicates that the average
magnetic field experienced by a trapped electron is a
function of its initial position z, the initial φ between
its momentum vector and the magnetic field, the
main magnetic field B0, and the parameter L.

3. Range of Trapped Angles

In order to create a distribution of the average mag-
netic fields B̄ experienced by trapped electrons, it is
essential to consider the range of pitch angles φ with
respect to z that an electron may possess to remain
trapped. Considering a magnetic field directed along
z and a system of Cartesian coordinates, the range of
trapped angles φ is symmetric about the xy-plane.
Due to this symmetry, this calculation considers a
maximum trapped angle of 90◦ with respect to z.
The minimum trapped angle for an electron orig-
inating at position z along the axis is determined
under the assumption that the maximum magnetic

field ( ~B) the electron experiences is the maximum
extent of the magnetic field overall

(
B
(

∆z
2

))
, where

∆z
2 is again equal to 1.0-cm. Utilization of the con-

servation of the magnetic moment gives the follow-
ing:

sin2 φ

sin2 φmax

=
B(z)

B
(

∆z
2

)
sin2 φ =

B(z)

B
(

∆z
2

)
φ = arcsin

√
B(z)

B
(

∆z
2

) .
Hence, the pertinent range of trapped angles is:

arcsin

√
B(z)

B
(

∆z
2

) ≤ φ ≤ 90◦.

4. Ranges of Average Field and z-position

When a trapped electron originating along z experi-
ences its minimum trapped pitch angle φ, it is bound
to reach the maximal value for B̄. This maximal B̄
for the electron is given by

B̄ = B0

(
1 +

z2
max

2L2

)
= B0

(
1 +

1

2L2

(
csc2 φmin(L2 + z2)− L2

))
= B0

(
1 +

1

2L2

((
B
(

∆z
2

)
B(z)

)
(L2 + z2)− L2

))

=
B0 +B

(
∆z
2

)
2

(III.6)
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since its motion leads it to the maximum value for ~B.
At a maximum initial pitch angle φ of 90◦ with re-
spect to z, the electron experiences a minimal value
for B̄ based on its initial z-position. This lower limit
is given by

B̄ = B0

(
1 +

1

2L2
(csc2 φmax(L2 + z2)− L2)

)
= B0

(
1 +

1

2L2
((L2 + z2)− L2)

)
=
B0 +B(z)

2
(III.7)

since the electron does not explore higher values of
the magnetic field than that at the position at which
it originates. This lower limit on B̄ stipulates a range
of applicable z values for an electron experiencing a
given B̄ according to the following:

−L
√

2
(
B̄
B0
− 1
)
< z < L

√
2
(
B̄
B0
− 1
)
. (III.8)

The trapping ranges considered in Sections III.A.3−
4 for φ, B̄, and z apply in constructing the proba-
bility density function for B̄.

5. Constructing the Probability Density Function

The distribution of average magnetic fields B̄ is
given by the probability density function for B̄. This
function is constructed according to the following re-
lationship:

dN

d cosφ
=
dN

dB̄

dB̄

d cosφ
, (III.9)

where N is a number of electron trapping events.
The term on the left-hand side of Equation III.9 is
considered constant such that some spherical vol-
ume is uniformly populated with trapping events.

What is desired on the right-hand side of the equa-
tion is the first term: how the number of trapping
events changes with B̄. What can be calculated is
the second term on the right-hand side of the equa-
tion, based on the functional form for B̄ given by
Equation III.5.

First, since d(cosφ) = sinφdφ, an expression
for sinφ in terms of B̄, z, and constants is deter-
mined given the functional form for B̄. This leads
to the following:

sinφ =
1

L

√
B0(L2 + z2)

2B̄ −B0
. (III.10)

Similarly, an equation for dφ in terms of B̄, z, and
constants is determined to be the following:

dφ = dB̄ −1
(2B̄−B0)

√
B0(L2+z2)

(2B̄−B0)L2−B0(L2+z2)
. (III.11)

Equations III.10 and III.11 multiplied together
give an equation for how the probability density
changes with B̄

(
dP
dB̄

)
in terms of B̄, z, and con-

stants. This equation is as follows:

dP
dB̄

= −A(B0)(L2+z2)

L(2B̄−B0)
3
2

√
(2B̄−B0)L2−B0(L2+z2)

, (III.12)

where A is some normalization constant. The goal is
to find the probability density for a particular value
of B̄. Given that Equation III.12 is in terms of B̄
and z, the next step of this calculation is to integrate
that equation over the range of z values applicable
to a given B̄. This range is given by Inequality III.8.
In addition, the range of B̄ given in Section III.A.4
must be considered. This means that the integral
Equation III.12 over applicable z will evaluate for
values of B̄ greater than the main field B0 and less

than
B0+B( ∆z

2 )
2 ; otherwise, the integral evaluates to

0. The desired function is given by Equation III.13,
where f(z, B̄) is Equation III.12.

dN

dB̄
= 2H(B̄ −B0)H

(
B0 +Bmax

2
− B̄

)∫ L

√
2
(

B̄
B0
−1
)

0

f(z, B̄) dz

= H(B̄ −B0)H

(
B0 +Bmax

2
− B̄

)(
−πLB̄

√
B0(2B̄ −B0)

3
2

)
. (III.13)

This is the probability density function for B̄
given that a trapped electron originates along the
z-axis with position z and angle φ between its mo-
mentum vector and the direction of the magnetic
field.

6. Comparison to the Monte Carlo

In a Monte Carlo simulation, a series of similar cal-
culations can be performed. Each of some number
of electrons is randomly assigned a position z within
the z-extent of the trap. In addition, each electron
is randomly given an initial pitch angle φ with re-
spect to the magnetic field. With this information,
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FIG. III.2. Distribution of B̄-values On-axis

the simulation calculates the magnetic field experi-
enced by each electron and determines whether it is
trapped according to the range of allowable trapping
angles.

If an electron is in fact trapped, the simula-
tion will calculate the average magnetic field it ex-
periences based on its maximum z-position. Then,
a histogram of all determined B̄-values is plotted.
Overlaying the red analytical function in Equation
III.13 with this blue histogram produces Figure
III.2, showing close agreement between analytical
solution and simulation.

7. Relating the Analytical Solution and Monte Carlo

Manipulation of Equation III.4 allows the quantity(
zmax

L

)2
to be represented as follows:(zmax

L

)2

=

(
cos2 φ+

(
z
L

)2
sin2 φ

)
. (III.14)

Substituting Equation III.14 into Equation III.5
gives the following:

B̄

B0
=

[
1 +

cos2 φ+
(
z
L

)2
2 sin2 φ

]
.

When cosφ is near 0 and sinφ is near 1, the

value of B̄
B0

increases slowly for fixed z. As cosφ ap-

proaches 1 and sinφ goes to 0, the value of B̄
B0

begins
to increase more quickly. Figure III.3 considers the

ratio of B̄
B0

as a function of cosφ for a fixed z, z = 0.
For z = 0, the range of trapped angles considered is
from approximately 84.3◦ to 90◦, corresponding to
a range for cosine of 0 to approximately 0.0993.

Figure III.3 shows that there is a higher con-
centration of events at φ-values closest to 90◦, and
the number of events tapers-off with decreasing an-
gle and increasing field strength. This helps to ex-

FIG. III.3. B̄
B0

versus cosφ for z = 0. As cosφ grows,
the fraction of electrons trapped decreases.

plain why Figure III.2 shows the on-axis distribution
function for B̄ peaking near B0.

B. Off-Axis Calculation

The next field configuration examined for this re-
search is that of a magnetic bottle. Now, decay
electrons originate with some position (z) along the
z-axis, some radius (r) with respect to the z-axis,
and some pitch angle (φ) with respect to the mag-

netic field ( ~B). The field equations corresponding to
a trap of this type are as follows:

Br =
−B0rz

L2

Bθ = 0

Bz = B0

(
1 +

z2

L2

)
− B0r

2

2L2
.

The z-component of this field can be repre-
sented according to Equation III.1 with an appro-
priate change of variables:

B0 → B′0 = B0

(
1− r2

2L2

)
(III.15)

L→ L′ = L

√(
1− r2

2L2

)
(III.16)

B
(

∆z
2

)
→ B′

(
∆z
2

)
= B0

(
1 +

( ∆z
2 )

2

L2 − r2

2L2

)
. (III.17)

1. Finding zmax and Time-averaged Magnetic Field B̄

As with the on-axis case, the idea that the magnetic
moment is invariant is essential in determining the
maximum z-position (zmax) for a given electron with
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initial z-position (z), initial pitch angle (φ), and ra-
dius of orbit (r). Solved in the same fashion as Sec-
tion III.A.2, this gives the following for zmax:

sin2 φ

sin2 φmax

=
B(z)

B(zmax)

sin2 φ =
B0

(
1 + z2

L2

)
− B0r

2

2L2

B0

(
1 +

z2
max

L2

)
− B0r2

2L2

zmax = L
√(

(csc2 φ− 1) + z2

L2 csc2 φ− r2

2L2 (csc2 φ− 1)
)
.

(III.18)
This information about the maximum attain-

able z-position for a given electron applies in calcu-
lating the time-averaged magnetic field (B̄) it expe-
riences.

The electron has a z-equation of motion accord-
ing to Equation III.3. The functional form for B̄ is
then as follows:

B̄ =
1

T

∫ T

0

−rzB0

L2
r̂ +

((
z2 − r2

2

)
B0

L2
+B0

)
ẑ dt

= B0

(
1 +

z2
max

2L2

)
− B0r

2

2L2
ẑ. (III.19)

2. Applying the On-axis Solution Off-axis

The on-axis solution of Section III.A applies to
this calculation with the change of variables accord-
ing to Equations III.15− 17. This gives the form of
Equation III.20.

dN

dB̄
= H(B̄ −B′0)H

(
B′0 +B′max

2
− B̄

)(
−πL′B̄√

B′0(2B̄ −B′0)
3
2

)
. (III.20)

This Equation III.20 is in terms of r and B̄.
Thus, it must be integrated over the range of r ap-
plicable to a given B̄. This integral is performed in
three parts according to following bounds:

B′0(rmax) ≤B̄< B′0(r = 0)

B′0(r = 0) ≤B̄< B̄(rmax,
∆z

2
)

B̄

(
rmax,

∆z

2

)
≤B̄≤ B̄

(
r = 0,

∆z

2

)
.

The limits on r differ for each of these three
subranges of B̄. For the first range of B̄ exam-
ined, B′0(rmax) is the minimum possible extent for
B̄ overall, and B′0(r = 0) is the minimum extent
of B̄ at r = 0. Each of these B̄-values applies at
some minimum radius given by the Heaviside func-
tion H(B̄ −B′0) through rmax, the maximum possi-
ble radius considered. The bounds for r applicable
to this range of B̄ are given by

L

√
2

(
1− B̄

B0

)
< r < rmax. (III.21)

For the second range of B̄ examined,
B̄(rmax,

∆z
2 ) is the maximum extent for B̄ at the

maximum radius rmax considered. All values of B̄
within this range are applicable at radii from r = 0
through r = rmax. The bounds for r applicable to
this range of B̄ are given by

0 < r < rmax. (III.22)

For third range of B̄ examined, B̄
(
r = 0, ∆z

2

)
is the maximum extent for B̄ overall. All values
of B̄ within this range are applicable at radii from

r = 0 through a maximum radius determined by the

Heaviside function H
(
B′

0+B′
max

2 − B̄
)

. The bounds

for r applicable to this range of B̄ are given by

0 < r < L

√√√√2

(
1 +

(
∆z
2

)2
2L2

− B̄

B0

)
. (III.23)

Thus, integrating Equation III.20 over each of
the three subranges of B̄ based on the range of r
applicable to each subrange produces the piecewise
probability density function in Equation III.24 at the
top of the next page.
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B′0(rmax) ≤ B̄ < B′0(r = 0) :
2πL3B̄

(B0)
3
2

 1√(
2B̄ −B0 +

B0r2
max

2L2

) − 1√
B̄



B′0(r = 0) ≤ B̄ < B̄(rmax,
∆z

2
) :

2πL3B̄

(B0)
3
2

 1√(
2B̄ −B0 +

B0r2
max

2L2

) − 1√
2B̄ −B0



B̄

(
rmax,

∆z

2

)
≤ B̄ ≤ B̄

(
r = 0,

∆z

2

)
:

2πL3B̄

(B0)
3
2

 1√(
B̄ +

B0( ∆z
2 )

2

2L2

) − 1√
2B̄ −B0

 . (III.24)

3. Comparison to the Monte Carlo

In a Monte Carlo simulation, a series of similar cal-
culations can be performed. Each of some number
of electrons is randomly assigned a position z within
the z-extent of the trap, an initial pitch angle φ with
respect to the z-axis, and some radius of orbit r
with respect to the z-axis. With this information,
the simulation calculates the magnetic field experi-
enced by each electron and determines whether it is
trapped according to the range of allowable trapping
angles.

If an electron is indeed trapped, the simulation
will calculate the average magnetic field it experi-
ences, and a histogram of the determined B̄-values
is plotted. Overlaying the analytical function in red
with this histogram in blue produces Figure III.4,
showing close agreement between analytical solution
and simulation. Note here that the depth of the trap
has been changed with an L of 0.316 m.
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FIG. III.4. Distribution of B̄-values Off-axis

C. Efficiency Calculation

As determined in Section III.A.3, decay electrons
with pitch angle φ within a certain range remain
trapped. The fraction of solid angles that remains
trapped is a measure of trapping efficiency. With
the range of trapped angles from Section III.A.3, the
fraction of the solid angles remaining trapped of 4π
total is as follows:√√√√√ 2

((
∆z
2

)2 − z2
)

2L2 + 2
(

∆z
2

)2 − r2
. (III.25)

A constant value for r is assumed. The measure of
half the z-extent of the trap (∆z

2 ) is allowed to vary
for each of five values of the parameter L. Thus,
integrating III.25 over z from 0 to ∆z

2 produces the

fractional solid angle trapped as a function of ∆z
2 ,

L, and the constant r. This fraction is given by√
2

2L2 + 2
(

∆z
2

)2 − r2

(
π∆z

2

4

)
. (III.26)

Similarly, in a Monte Carlo simulation, five val-
ues for L are considered. For each value of L, ∆z

2
takes on the first in a range of 250 values between
some pre-established maximum and minimum. The
z-axis is then uniformly populated with electrons
within this range of z, and each electron is uniformly
assigned some r within the established, constant r-
extent and some pitch angle φ with respect to the
magnetic field. The simulation checks to see whether
each electron is trapped and keeps a running tally
of the number of electrons generated. This process
continues until 250 electrons are trapped. The ratio
of the number of electrons trapped (250) to the to-
tal number of electrons generated is another way of
expressing the trapping efficiency for that particular
combination of L, ∆z

2 , and r. This process continues

for each value of ∆z
2 desired. Then, the entire pro-

cess repeats for each of the four subsequent values
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of L. This produces Figure III.5, where the value of
L increases from the top trace to the bottom.
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FIG. III.5. Efficiency Measures for 5 L-values and Vary-
ing ∆z

2

This Figure III.5 indicates that trapping effi-
ciency decreases with increased values of L, which
holds true according to Equation III.26. In addi-
tion, trapping efficiency increases for each L-value
with ∆z

2 , which is also evident from Equation III.26.

IV. COMPARISON TO ENERGY SPECTRA
FROM PROJECT 8

As described in Section II, the magnetic field dis-
tributions of Section III can be used to create an
energy spectrum for decay electrons. Through ma-
nipulation of the Monte Carlo simulation of Section
III.B., the steps and results of this process can be
conveyed. In the same Monte Carlo simulation, fre-
quency measurements for each trapped electron are
obtained by arbitrarily assuming the kinetic energy
of each at 30 keV. Then, the angular frequency ω
for each trapped electron can be approximated to
the following:

ω =
eB̄

γm
, (IV.1)

where a substitution of 30 keV is made into the γ
term, and B̄ is the average magnetic field the partic-
ular electron is calculated to experience. Then, with
a frequency measurement for each electron, the γ for
each can be evaluated based on the average magnetic
field B̄ it is most likely to experience. Since Figure
III.4 has a relatively square shape, the likely field
selected is 1.002-T. This substitution for B̄ is made
into the following:

γ =
qB̄

ωm
, (IV.2)
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FIG. IV.1. Energy Spectrum Comparison

where ω is again the electron’s already determined
angular frequency. Knowledge of each electron’s new
γ allows for the calculation of the kinetic energy (K)
in keV of each, where

K = (γ − 1) ∗ 511. (IV.3)
This produces a spread in kinetic energies that ap-
pears as in Figure IV.1. The width of the spectrum
in Figure IV.1 is comparable to that of the Project
8 energy spectrum near these values of the kinetic
energy[1].
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