Superconducting Single Photon Detectors and Diamond **Nanophotonics**

John Y. Shin

UCSC

August 30, 2015

John Y. Shin (UCSC) SSPDs and Diamond Nanophotonics August 30, 2015 1/26

∢ ⊡

Stepping Back, Diamond and the NV^- Center 1

- \bullet Diamond has $Fd\bar{3}m$ symmetry
- Nitrogen atom replaces a Carbon atom, and there is an adjacent vacancy
- 3 electrons from 3 Carbon atoms, 2 from the Nitrogen atom, and 1 captured electron for a total of 6
- Symmetry is deformed into C_{3v} , trigonal pyramid, where the N-V axis is deformed

¹Childress, Diamond Sensing Conference

The NV⁻ Center in Diamond as a Qubit

- Wide band-gap (5.5 eV)
- (Solid-State) Integration of electronic and optical devices on-chip
- (Solid-State) Tunable properties, fast control
- Optical access to individual electronic and nuclear spins at room temperature (637 nm transition)
- Long spin coherence times (up to .6s at 77K $^1)$
- Very well-studied solid-state QIP system

 1 Bar-Gill, doi:10.1038/ncomms2771

Our System, Why GaP?

- Incorporates Gallium Phosphide Waveguides/Resonators
- Wide bandgap allows optical wavelengths
- $n=3.41 > 2.41$
- GaP can be made to have a smooth surface; diamond is difficult to be made smooth
- Opto-electronic material

What is an SSPD, and how does it fit in? 1

- Individual photons emitted by the NV^- need to be sensed
- Ideally, detector needs to be compact, fast, highly-efficient, and on-chip to avoid coupling losses
- Solution: Superconducting single photon detectors
- Over 90% efficiency in other systems, 400 ps dead time $¹$ </sup>
- Not yet implemented for NbN/GaP, but there are results for NbN/Diamond ²

 1 Pernice, $10.1038/n$ comms2307 2 Rath, arXiv:1505.04251

 Ω

4 D F

- Detector is cooled to cryogenic temperatures
- A current is applied through contacts, and since resistance is zero there's no voltage
- A photon travels through the waveguide, and is absorbed by the detector
- The absorption event breaks/suppresses the superconductivity, and there's a voltage spike across the detector

Traveling Wave Design¹

Traveling wave (waveguide coupled) design maximizes the absorption rate, increasing device efficiency

 1 Kahl, 10.1038/srep10941 イロト イ部 トイヨ トイヨト John Y. Shin (UCSC) [SSPDs and Diamond Nanophotonics](#page-0-0) August 30, 2015 7 / 26

 QQ

Why NbN?

- **•** Well-studied
- Partnership with Fiore Group in Eindhoven, who can produce high-quality samples

 \leftarrow

∢ ⊜⊺ \rightarrow

Stepping Back, History of Superconductivity

- Superconductivity first discovered by Onnes in 1911
- Phenomenological model of superconductivity described by Ginzburg Landau theory in 1950 (2003 Nobel)
- Microscopic superconductivity described by BCS theory in 1957 (1972) Nobel)
- \bullet Gor'kov showed that the two theories were connected in 1959 1

A Little About Superconductivity ¹

A band-gap opens up in the single-particle density of states, ∆ above and below the Fermi level. 2∆ corresponds to the binding energy of the pairs.

4 D F

¹Pracht, 10.1109/TTHZ.2013.2255047

John Y. Shin (UCSC) [SSPDs and Diamond Nanophotonics](#page-0-0) August 30, 2015 10 / 26

- The Ginzburg Landau Theory (GL) is a macroscopic description of the superconducting wave-function
- When encountering spatial inhomogeneity, GL Theory is easier to work with
- GL Theory introduces a complex order parameter, where the square is equal to the local density of superconducting electrons

$$
\psi(r) = |\psi(r)|e^{i\theta(r)}, \quad |\psi(r)|^2 = n(r) \tag{1}
$$

 Ω

イロト イ押ト イヨト イヨト

Ginzburg Landau Differential Equations

$$
\alpha \psi + \beta |\psi|^2 \psi + \frac{1}{2m^*} \left(\frac{\hbar}{i} \nabla - \frac{q^*}{c} \vec{A} \right)^2 \psi = 0 \tag{2}
$$

$$
\vec{J}_s = \frac{q^*}{m^*} |\psi|^2 \left(\hbar \nabla \phi - \frac{q^*}{c} \vec{A} \right) = q^* |\psi|^2 \vec{v}_s \tag{3}
$$

- When you remove the non-linear term in the first equation, it reduces to the Schroedinger equation with eigenvalue $-\alpha$
- The non-linear term acts like a repulsive potential of ψ on itself, spreading it out
- The quantity $\frac{-\alpha}{\beta}$ can be taken to be the value of the wave-function in the absence of surface currents and fields

KET KEN KEN (EN 1900)

Quantities of Interest in Superconductors

- \bullet Critical temperature, T_c
- Pippard's coherence length, ξ_0
- Ginzburg Landau coherence length, ξ
- \bullet Critical current, I_c
- London penetration depth, λ_L
- Electron mean-free path, l
- "Dirty" superconductor $1 \ll \xi_0$
- Type-II superconductor $\kappa = \frac{\lambda_L}{\xi} > \frac{1}{\sqrt{\epsilon}}$ 2
- NbN is type-II and "dirty"

Inherent Difficulty of Simulation

 \bullet Detection mechanism not well understood 1

 1 Renema, 10.1103 /PhysRevLett.112.117604

John Y. Shin (UCSC) [SSPDs and Diamond Nanophotonics](#page-0-0) August 30, 2015 14 / 26

 Ω

重き

KO K K R K K

- Is the superconductivity broken in a cylindrical normal region?
- Or is the superconductivity suppressed in a more wider region?
- What role do magnetic vortices play?

 QQ

正々 メラ

4 ロ ▶ 4 母 ▶ 4

Other Factors at Play

- NbN must be in δ NbN phase for highest T_c (cubic) ¹
- Fabrication limitations many devices likely to be broken as fabrication process is refined
- Ideally, GaP surface and NbN surface has an RMS roughness of less than half a nm, which we've achieved

¹Marsili, 10.1088/0953-2048/22/9/095013

John Y. Shin (UCSC) [SSPDs and Diamond Nanophotonics](#page-0-0) August 30, 2015 16 / 26

 QQQ

• High device detection efficiency (DDE)

$$
DDE = \eta_{\text{abs}} \times \eta_{\text{reg}} \tag{4}
$$

- Low dark counts (Kosterlitz Thouless transition) $¹$ </sup>
- Low timing jitter (arrival time uncertainty)
- Low dead time (recovery time)

 QQQ

 1 Semenov, 10.1016 /j.physc.2007.11.028

Geometry Constraints, Creating the Optimal Detector $¹$ </sup>

- **Curvature of bend**
- Thickness/width of the nanowire
- Fill-factor (width / distance between symmetric structures)
- **•** Geometry of GaP waveguide

Curvature of Bend¹

- Current crowds around sharp corners, reducing the critical current
- Optimal curvature follows contour line that separates current-crowding region and current-expanding region in a gapless bend

$$
y = \pm \frac{2w}{\pi} \cos^{-1} \left[\exp \left(\frac{x\pi}{2w} \right) \right]
$$
(5)

 1 Clem, 10.1103 /PhysRevB.84.174510

John Y. Shin (UCSC) [SSPDs and Diamond Nanophotonics](#page-0-0) August 30, 2015 19 / 26

- The $\xi_{GL}(T)$ coherence length is a characteristic length scale for spatial variations in the macroscopic superconducting wave-function
- As such, to keep spatial variations (in the event of suppression/breaking of the superconductivity during photon events) uniform through the thickness, we shall keep the thickness around this value, $\xi_{GI} \approx 5$ nm
- **If** we assume a model, we can place an upper-bound on the width associated with a wavelength cut-off, and a lower bound associated with the formation of magnetic vortices

$$
30\,nm < w < 130\,nm\tag{6}
$$

イロト イ押ト イヨト イヨトー

 QQQ

Simulations and Results

- Finishing up calculating $\eta_{abs}(w_{nw}, fill, x_{wg}, y_{wg})$
- Other approaches: double meander
- \bullet $\eta_{\text{abs}}(w_{\text{nw}}, b, c, d)$ peaks at around $w_{\text{nw}} = 110 \text{nm}$
- Working on: coupling to $\eta_{reg}(w_{nw})$ to maximize DDE

Magnetometry: Quick Overview

- Magnetic nanoparticles are tethered to diamond chip by DNA
- Motion and configuration of the DNA strand can be sensed by how the B-field of the nanoparticles affects the NV^- centers.

 \leftarrow

Problem and Solution

- Problem: too much background noise from NV^- centers that are excited around the nanoparticle, rather than those directly beneath it
- Solution: etch diamond pillars into the chip, focusing the signal

• Start building them!

重

 2990

イロト イ部 トイヨ トイヨト

- Kai-Mei Fu, Mike Gould, Michael Driscoll
- 2015 UW REU: Deep, Alejandro, Rybka, Shih-Chieh Hsu, Linda, Farha, Ron
- **a** REU Cohort!

4 0 8

 \leftarrow \leftarrow \leftarrow \leftarrow

÷

 QQ

医下环菌