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The NV − center in diamond is a well-studied qubit system with applications in quantum informa-
tion processing and magnetometry. Among the current fronts of research in quantum information
processing is the entanglement of these NV − center defects. To this end, on-chip single photon
detectors are a necessary step towards quantum gates and scalability. Our system incorporates
gallium phosphide waveguides to route the photon emissions from the NV − centers. We intend to
implement waveguide-coupled niobium nitride superconducting single photon detectors for on-chip
detection. Theoretical and experimental results are examined to narrow the region of interest, and
FDTD simulations are used to calculate the absorption probability.

INTRODUCTION

The NV center is a defect in diamond where a nitrogen
replaces a carbon atom and there is an adjacent vacancy
at a lattice site [4]. Initially charge neutral, a captured
electron makes the charge state negative. The defect has
many attractive properties as a qubit, including long-
lived spin quantum states and well-defined optical tran-
sitions [2]. Our system incorporates gallium phosphide
waveguides and disk resonators [24] as a photonic net-
work over the diamond substrate, as seen in Figure 1.

Figure 1: GaP disc resonators and waveguides, lab
sample.

Our goal is to implement waveguide-coupled niobium
nitride superconducting single photon detectors (SSPDs)
as a step towards many-qubit entanglement and scalabil-
ity. SSPDs are quasi-2D nanowires with thicknesses on
the order of nanometers, widths near 100 nm, and lengths
on the order of microns. We simulate the absorption
probability as a function of the geometry of these detec-
tors.

SSPDS AND SIMULATIONS OF THEIR DEVICE
EFFICIENCY

Superconducting single photon detectors (SSPDs) al-
low on-chip detection of individual photons, a key com-
ponent of quantum information processing. Our system
will implement SSPDs in the “traveling wave” design,
where the nanowire is placed in a single U shape on top
of a GaP waveguide, which lies on top of a diamond sub-
strate, as in Figure 2.

Figure 2: Detector design. The blue object is the
detector, the red layer is the waveguide, and the gray

layer is diamond.

To this end, a detector with high device detection ef-
ficiency (DDE) is necessary (the fraction of photons al-
ready propagating in the waveguide which can be regis-
tered). The DDE can be separated into two components
[6]:

ηdde = ηabs × ηreg (1)

Where the first term is the probability that a photon
will be absorbed, and the second term is the probability
that this event will register a count. The first quantity
can be naively made to approach unity by increasing the
length, width, and thickness of the detector [15]. The
second quantity can be naively optimized by decreasing
the width and thickness of the detector [15]. We note
that some papers also incorporate the probability that
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the photons couple into their waveguide into their device
efficiency [6], and the nomenclature for both these terms
can vary.

Niobium nitride (NbN) nanowires have been imple-
mented as SSPDs in silicon and other systems. A “trav-
eling wave” detector design allows maximization of the
probability of absorption.

The photon detection mechanism in NbN nanowires is
currently debated in the literature. The general mecha-
nism is that the absorption of the photon causes either
suppression or breaking of the superconductivity, and,
aided by vortices, this causes the biased detector to expe-
rience a voltage spike. Though the finer details of the de-
tector physics involves microscopic quantum mechanics,
the absorption characteristics (ηabs) of the detector can
be simulated and optimized with finite difference time do-
main (FDTD) simulations of Maxwell’s equations. These
simulations, guided by the theoretical models, provide a
guideline for the fabrication process. The difficulty of
simulating the detector lies in the fact that the detection
mechanism is still debated [18, 21], and while FDTD sim-
ulations can be used to optimize the absorption of the
detector, ηreg cannot be easily simulated.

There are two proposed models of the detection mech-
anism with two varieties of each: the hotspot model with
and without magnetic vortices, where the superconduc-
tivity is completely suppressed in a cylindrical region,
and the diffusion model with and without magnetic vor-
tices, where the superconductivity is suppressed over a
wider region that crosses the width of the detector [18].
In the first model, the minimum threshold for the bias
current necessary for a constant detection probability is
related to the photon energy by [6]:

(1− Ith/Ic) ∝
√
E (2)

While in the second model it is related by:

(1− Ith/Ic) ∝ E (3)

Thus, the relationship between photon energy and rel-
ative current can be used for model analysis. Even with
the assumption of one of the models, many of the pa-
rameters of the models require very coarse assumptions,
i.e., the relationship between the photon energy and the
size of the suppression/breaking of the superconductiv-
ity, the distribution of the quasiparticles, and the amount
of quasiparticles created during the event.

To truly simulate ηdde, ηreg would need to be simu-
lated along with ηabs. We examine theoretical models
and experimental data to refine our optimization of ηabs,
but do not calculate ηreg directly.

SUPERCONDUCTIVITY OF NBN AND
GEOMETRIC CONSTRAINTS

Superconductors are known for their zero resistance
under a critical temperature, Tc, which is defined to be
the middle of the transition towards zero resistance. In
Figure 3, we see the normalized resistance as a function
of temperature for a 6 nm thick lab sample.

Figure 3: NbN on GaP Critical Temperature, Lab
Sample

NbN superconductivity can be described by the type-
II BCS theory [25] and Ginzburg-Landau theory. The
Ginzburg-Landau theory is a model of macroscopic su-
perconductivity which falls out of BCS theory near Tc
and when spatial variations of the superconductivity are
not too rapid. As a quasi-2D system, novel phenomena
also emerge (namely the KT transition [22]).

We first define Pippard’s coherence length, which can
be derived from a few simple arguments. Since electrons
participating in the superconductivity must be approxi-
mately within kTc of the Fermi surface, their momentum
range is approximately δp ≈ kTc/vF , where vF is the
Fermi velocity. Using the uncertainty relation, we find:

δx = ξ0 = a
h̄vF
kTc

(4)

Where a is predicted to be 0.18 by BCS theory.
Roughly speaking, this denotes Cooper pair size. A
“dirty” superconductor is when the electron mean free
path l is much less than Pippard’s coherence length, ξ0.
This limits the effective coherence length of the cooper
pairs, and leads to an increased penetration depth for
fields.

There is a second coherence length, called the
Ginzburg-Landau coherence length, which character-
izes the distance over which the superconducting wave-
function can vary. We shall call this ξ(T ). This quantity
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approaches ξ0 at T � Tc. Using the London equations,
we find that magnetic fields are exponentially screened
from the interior of a superconductor with penetration
depth λL(T ). The ratio of these two parameters κ = λ

ξ

is called the Ginzburg-Landau (GL) parameter.
Type II superconductivity is where the GL parameter

satisfies κ = λL

ξ > 1√
2
, which corresponds to the transi-

tion to negative surface energy.
The Ginzburg-Landau theory introduces a complex or-

der parameter ψ = |ψ|eiθ where |ψ|2 is equal to the local
density of superconducting electrons [23]. The GL equa-
tions are:

αψ + β|ψ|2ψ +
1

2m∗

(
h̄

i
∇− q∗

c
~A

)2

ψ = 0

~Js =
q∗

m∗
|ψ|2

(
h̄∇φ− q∗

c
~A

)
= q∗|ψ|2 ~vs

(5)

We can see that ~Js appears to be equivalent to the
one-particle equation with an effective mass and charge,
where the starred terms are merely double the values
for the electron. The first equation reduces to the
Schroedinger equation with eigenvalue −α when the non-
linear term is removed. The nonlinear term acts like a
repulsive potential of ψ on itself, spreading it out uni-
formly, which is an intuitive result of Coulomb repulsion.
When removing the third term in the first equation, we
also find that |ψ|2 = −α

β . The physical meaning of this
ratio can be understood as the wave-function value in-
finitely deep in the interior of the superconductor, where
it is screened from any surface currents or fields. Future
work could be done to couple these equations to the ab-
sorption rates [21, 26], or to couple the absorption rates
to a quasiparticle diffusion model [6].

The quantity, α, is also related to the GL coherence
length by:

ξ(T ) =

√
h̄2

2m∗|α(T )|
(6)

For the interest of geometric constraints, we are pri-
marily interested in the GL coherence length. Of inter-
est are also the superconducting bandgap, ∆(T ), and the
critical/depairing current, Ic. To suppress or break the
superconductivity, the energy of the photon must satisfy:

E =
hc

λ
� ∆ (7)

Since our photon energy is on the order of eV and the
superconducting bandgap on the order of meV , this is
readily satisfied. A naive upper-bound on the number of
quasiparticles, Nqp, created by the event is E/∆. In re-
ality, there is a conversion factor depending on the wave-
length of the photonNqp = ζhf

∆ , where ζ is on the order of

0.15 [5]. For the detection mechanism, the detector must
be biased to near Ic, and a subsequent absorption of a
photon exceeds the threshold, creating a voltage spike
across the detector. An estimate of the critical current,
in the approximation ξ � w can be given by [3]:

Ic =
φ0w

eπµ0ξΛ
(8)

Where Λ is the Pearl length (2λ2
L/d, where d is the

thickness), w is the width of the detector, φ0 is the mag-
netic flux quantum, e is the base of the natural logarithm,
and ξ is the GL coherence length. The Pearl length is a
length scale for Pearl vortices, and since w � Λ, we can
ignore current-induced magnetic fields [7].

Next, we shall impose constraints on the geometry of
the detector to narrow the region of interest for our sim-
ulations.

The thickness of the detector is a complex interplay be-
tween Tc, Ic, ηabs, and ηreg. A thicker detector improves
Tc, Ic, and ηabs, while a narrower detector improves ηreg.
In an email, J.J. Renema suggests that we do not stray
from 4-5 nm. We can also consider the fact that we want
to keep any suppression/breaking of the superconductiv-
ity uniform over the thickness of the wire. As such, we
would want to keep the thickness close to the Ginzburg
Landau coherence length, ≈ 5nm [6].

Next, we examine width constraints. The existence
of magnetic vortices in the detector is predicated on the
width of the detector satisfying the relationship: [22]

w > 4.4ξGL(T ) (9)

Where ξ(T ) is the Ginzburg-Landau coherence length
taken at ambient temperature. Since these vortices are
thought to play an important role in the detection mech-
anism [18], we can use this as a coarse lower bound on
our detector widths.

Next, we must assume a model to allow us to constrain
the width of the detector with an upper bound. We as-
sume the hotspot model. Under this model, we find that
the diameter of the hotspot must be large enough such
that the current around it breaks the critical current den-
sity. This can be stated:

D > w

(
1− Ib

Ic

)
(10)

Where Ib is the current bias, Ic is the critical current,
w is the width of the nanowire, and D is the diameter of
the hotspot. If we assume a two-dimensional hotspot, the
surface area of our hotspot is proportional to the energy
of our photon, hence:

D ∝ 1√
λ

(11)



4

Thus, we can place an upper-bound on the width of
our detector:

w <
c1√
λ

(12)

This constant, c1, has been experimentally found to
be 1.5× 10−10m3/2 [14], which corresponds to a width of
approximately 188 nm for our 637 nm photons.

A more refined approach for an upper-bound was sug-
gested by J.J. Renema based on the work of Lusche [13],
which makes use of the hotspot model. In Figure 4, we
see the cut-off wavelength as a function of width based
on various models. The hotspot model, indicated by the
solid line, predicts that a cut-off wavelength of 637 nm
corresponds to 130 nm wire width. We shall use this as
our upper-bound.

Figure 4: Cut-off wavelength as a function of width [13].
The solid blue line corresponds to the hotspot model.

Alexei Semenov also suggested in an email that we
should not go beyond 120 nm based on the wavelength
cut-off associated with the hotspot model.

The corners of the U-shape must also be rounded to
avoid current crowding and reduction of the critical cur-
rent [8]. The optimal geometry for the inner bend to help
alleviate the reduction of critical current has a fill factor
of 1/3, which follows the contour line of the separation
between the current-crowding and current-expanding re-
gions in a 180 degree turn, as seen in Figure 5 [3], which
is given by the equation:

y = ±2w

π
cos−1[exp

(xπ
2w

)
] (13)

Where w is the width of the detector. However, this
low fill factor reduces the absorption rate of the detector.

The purpose of a higher critical current is that the
detection efficiency asymptotically approaches its ideal

Figure 5: Optimal inner-bend curvature [3]. Axes are
scaled to units of width.

quantity as a function of the bias current, and as one
approaches the critical/depairing current, the rate of
dark counts increases, hence being somewhere within the
plateau region before the dark counts begin is ideal. As
a trade-off between maximizing critical current and ab-
sorption rate, we set the fill-factor at 0.5.

J.J. Renema also suggests utilizing the field distribu-
tion of the photon based on a recently published paper
[19]. In his paper, he argues that photons absorbed near
the edges of the detector have a higher probability of
registering a count, based on the notion that absorptions
near the edge allow a higher probability of the entrance
of vortices. His results show that these enhanced edge ef-
fects are seen up to 30 nm from the edge of the detector,
suggesting an optimal width of 60 nm.

DEVICE EFFICIENCY AS A FUNCTION OF
THE BIAS CURRENT, AND THE ISSUE OF

DARK COUNTS

There are currently two papers in the literature that
make use of superconducting nanowires in a diamond
system [1, 17]. Atikian et. al. use NbTiN nanowires
directly on diamond with both 1310 and 632 nm pho-
tons, while Rath et. al. use NbN nanowires on diamond
rib-waveguide with 1550 nm photons. Rath et. al. re-
ported an on chip device efficiency of 66% using a double
meander design with a width of 100 nm and a length of
65 microns. Atikian et. al. do not report their efficiency.

Pernice et. al. [16] report the device efficiency as a
function of the width and length for a NbN on Si system
with 1550 nm wavelength photons, as seen in Figure 6.

We can see that the narrowest detector shows a more
pronounced knee-like behavior, and the device efficiencies



5

Figure 6: Device efficiencies as a function of width and
length for 1550 nm photons [16]

of the other detectors only surpass it near the last few
data points, where the 100 nm width shows the highest
efficiency. Kahl et. al. report similar behavior with NbN
on Si3N4 using telecom wavelengths [10] with an optimal
width of 80 nm. For 768 nm light, Schuck et. al. report
the highest efficiency for 75 nm width for a NbTiN on
Si3N4 system, as we can see in Figure 7, though the 60
nm width wire has comparable device efficiency and lower
noise equivalent power (NEP).

Figure 7: Device efficiency as a function of width and
length for 768 nm photons [20].

Though the nature of dark counts is still debated [11],
they begin to appear when the detector is biased near
the critical current. Because the sharper knee bend is a
feature of the narrower wires, it is important to consider
this fact along with the device efficiency.

Figure 8: Simulation boundaries. The diamond layer
meets the simulation boundary at 500 nm, the GaP is

140 nm thick, and the NbN detector is 5 nm thick. The
width of the GaP and diamond layers are 500 nm.

METHODS

The Lumerical FDTD Solutions code was used for
the simulations. We shall consider the x-coordinate
the width, the y-coordinate the thickness, and the z-
coordinate the length. The waveguide’s propagation axis
is along the z-direction. A base model of a 500 nm wide
and 140 nm thick gallium phosphide layer is laid on top of
a 500 nm wide diamond substrate, which is 500 nm in the
-y direction to the simulation boundary (using perfectly
matched layer boundary conditions, or PML), as seen
in Figure 8. The diamond layer extends fully through
the simulation boundary in the -y direction. The GaP
and diamond extend fully through the PML in both z-
directions. The detector begins 400 nm from the source,
where the bend in the U is the nearest feature to the
source.

The detector fully extends through the PML in the +z-
direction. The distance between the start of the detector
to the simulation boundary is 10 microns. The thickness
of the wire is set at a constant 5 nm, while the width,
fill-factor, and waveguide geometry is varied. The bend
structure is 150 nm in length. The center-to-center dif-
ference between parallel sections of the detector is called
the pitch. The ratio of the width of the detector over the
pitch is called the fill-factor.

The source is the fundamental TE mode of the waveg-
uide. The wavelength of the source was centered at 637
nm with a 15 nm span. The mode is injected along the
z-axis in the center of the GaP layer. Power monitors
were placed at the start of the detector, at the end of the
bend structure, and at 1.25 micron intervals of the detec-
tor. A power monitor was also placed as a x-z plane slice
through the GaP layer. The simulation boundaries were
kept at least half a wavelength away from any structure
features, except for the special instances listed above.
The accuracy of the mesh was set to 4, and a 2 nm (x)
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x 2 nm (y) override mesh was placed over the detector
structure.

“Hard” n values were used for the GaP and diamond,
3.31 and 2.42, respectively. Ellipsometry data was used
for the NbN refractive index [9].

RESULTS

Because the parameter space was too large (waveguide
thickness, waveguide width, nanowire width, nanowire
gap) in comparison to the simulation time, a multi-
parameter sweep could not be done, and three param-
eters were fixed while the fourth was varied. In Figure
9, we see the electric field distribution at 5 microns into
the detector.

Figure 9: E field distribution at 5 microns into the
detector.

We first examine the base model of 100 nm width, 5 nm
thickness, 0.50 fill-factor, with a GaP waveguide of 140
nm by 500 nm. We vary the width of the detector while
keeping the other parameters of the geometry constant.
We find that the maximum absorption is attained for a
width of 110 nm in Figure 10. We note that in the meth-
ods of Kovalyuk et. al. [12], they find a monotonically
increasing absorption as a function of width. Their meth-
ods make use of a constant nanowire gap, which leads to
an extremely sharp bend at higher nanowire widths at
the U-turn. In lieu of this, our work will use a constant
.5 fill-factor was chosen as a trade-off between absorp-
tion and maximum critical current. We also note that
Schuck et. al. [20] reports that nearly all optical light
was absorbed by 25 microns. We shall use this length as
a benchmark figure. We find that even for the lowest ab-
sorption at 60 nm width, the absorption probability will
be 98.00% for 25 microns. For the highest absorption
rate at 110 nm width, the absorption probability will be
99.28% for 25 microns.

This maximum in the absorption rate was attributed
to the gap between the nanowires separating sufficiently
enough at the higher widths such that it begins to out-
weigh the increased width of the detector.

Next, we return to our base model and adjust the fill-
factor. In Figure 11, we see the power absorbed as a

Figure 10: Power absorbed vs. the detector width

function of the distance between nanowires.

Figure 11: Power absorbed vs. the gap between
nanowires (pitch-width)

Though there are not enough data points to tell con-
clusively, in Figure 11 we can potentially see that the
absorption oscillates around the best fit line, with a wave-
length on the order of 100 nanometers. We also see this
effect with the GaP thickness in Figure 12, with roughly
the same wavelength. In Figure 13, we see that the power
absorbed peaks at 450 nm width waveguides.

The device detection efficiency is a complex interplay of
competing values. A larger detector increases absorption,
a lower fill-factor improves Ic but reduces absorption, and
a smaller detector improves the registration probability
and the efficiency plateau but lowers absorption. For the
first round of detectors, a safe starting geometry would
be 5 nm nanowire thickness, 100 nm nanowire width,
50% fill-factor, 500 nm waveguide width, and 40 microns
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Figure 12: Power absorbed vs. the thickness of the
Gallium Phosphide layer

Figure 13: Power absorbed vs. gallium phosphide width

in length. A more calculated geometry taking advantage
of the knee-like behavior would use 5 nm nanowire thick-
ness, 60-80 nm nanowire width, 50% fill-factor, 450 nm
waveguide width, and 25-30 microns in length.

CONCLUSION

We find that the use of waveguide-coupled niobium
nitride superconducting single photon detectors shows
promising absorption rates for 637 nm photons. Device
fabrication will begin this fall, and with the higher energy
optical photons, high device efficiencies are expected.
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Kostya Il’In, and Michael Siegel. Fluctuations and dark
count rates in superconducting NbN single-photon detec-
tors. Physica Status Solidi C: Conferences, 2(5):1668–
1673, 2005.

[8] H. L. Hortensius, E. F C Driessen, T. M. Klapwijk, K. K.
Berggren, and J. R. Clem. Critical-current reduction in
thin superconducting wires due to current crowding. Ap-
plied Physics Letters, 100(18), 2012.

[9] Xiaolong Hu. Efficient Superconducting-Nanowire
Single-Photon Detectors and Their Applications in
Quantum Optics. 2011.

[10] Oliver Kahl, Simone Ferrari, Vadim Kovalyuk, Gre-
gory N. Goltsman, Alexander Korneev, and Wolfram
H. P. Pernice. Waveguide integrated superconduct-
ing single-photon detectors with high internal quantum
efficiency at telecom wavelengths. Scientific Reports,
5(February):10941, 2015.

[11] J. Kitaygorsky, I. Komissarov, a. Jukna, D. Pan, O. Mi-
naeva, N. Kaurova, a. Divochiy, a. Korneev, M. Tarkhov,
B. Voronov, I. Milostnaya, G. Gol’tsman, and Roman R.
Sobolewski. Dark counts in nanostructured NbN super-
conducting single-photon detectors and bridges. IEEE
Transactions on Applied Superconductivity, 17(2):275–
278, 2007.

[12] V Kovalyuk, W Hartmann, O Kahl, N Kaurova, a Ko-
rneev, G Goltsman, and W H P Pernice. Absorption en-
gineering of NbN nanowires deposited on silicon nitride
nanophotonic circuits. Optics express, 21(19):22683–92,
2013.

[13] R. Lusche, a. Semenov, K. Ilin, M. Siegel, Y. Korneeva,
a. Trifonov, a. Korneev, G. Goltsman, D. Vodolazov, and
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