Improvements to the Mercury Electric Dipole Moment Experiment

Kyle Matsuda Advisor: Blayne Heckel

INT REU, University of Washington August 2015

Table of Contents

- 3 Current Dataset and Systematics
- 4 Magnetic Field Gradients

Table of Contents

- 2 Experimental Setup
- 3 Current Dataset and Systematics
 - 4 Magnetic Field Gradients
- 5 Conclusion

Motivation

- Charge conjugation (C): particle \rightarrow antiparticle
- Parity inversion (P): $\mathbf{r} \rightarrow -\mathbf{r}$
- Time reversal (*T*): $t \rightarrow -t$

CP violation¹:

- Required for baryogenesis
- Exists in the Standard Model, but not enough to account for matter-antimatter asymmetry

Image credit: Steve Jurvetson via Wikimedia Commons

¹ A. Riotto and M. Trodden, Annu. Rev. Nucl. Part. Sci. 49: 35-75 (1999) 🛛 🖘 🖉 🖉 🖉 🔍 🔍 🖓

Mercury electric dipole moment (EDM):

- Nonzero EDM violates CP symmetry
- *CPT* theorem: *CP* violation \iff *T* violation (as long as Lorentz invariance holds)

Hamiltonian:

- $H = -\boldsymbol{\mu} \cdot \mathbf{B} \mathbf{d} \cdot \mathbf{E}$
- μ , d, B are pseudovectors; E is a vector

	μ	В	d	E
Original	\uparrow	\uparrow	\uparrow	\uparrow
<i>T</i> -reversed	\downarrow	\downarrow	\downarrow	\uparrow

• ¹⁹⁹Hg: ¹ S_0 electronic ground state and nuclear spin 1/2

Image credit: http://chemistry.about.com/od/elementfacts/ig/Atom-Diagrams/Mercury-Atom.htm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- In external magnetic field, $H = -\mu \cdot \mathbf{B}$ \implies Larmor frequency: $h\nu_L = 2\mu B$
- Adding a possible EDM and E-field (anti)parallel to B,

 $H = -\boldsymbol{\mu} \cdot \mathbf{B} - \mathbf{d} \cdot \mathbf{E}$

• If EDM exists, it points along nuclear spin axis and

$$h\nu_L = |2\mu B \pm 2dE|$$

• Look for shift in ν_L when **E** is reversed relative to **B**,

$$\Delta
u =
u_{ ext{parallel}} -
u_{ ext{antiparallel}} = rac{4dE}{h}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Table of Contents

2 Experimental Setup

3 Current Dataset and Systematics

Magnetic Field Gradients

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Image credit: Clark Griffith

Measurement Sequence

Pump phase (\sim 30 s):

• Use circularly polarized light to optically pump Hg atoms on the $^1S_0(F=1/2)$ \rightarrow $^3P_1(F=1/2)$ line at 254 nm

• Chop pump light at ν_L to build up spin polarization normal to **B** Probe phase (\sim 150 s):

- Switch to linear polarization, detune from transition, attenuate beam
- Hg spin precession causes Faraday rotation at the Larmor frequency

Frequency Combos and Analysis

• To obtain Larmor frequencies, fit each photodiode signal to

$$I(t) = A\sin(\omega t + \phi)e^{-\Gamma t} + C$$

- Outer cells have $\mathbf{E} = 0$: used to look for systematics
- The frequency combination

$$\Delta \nu_{\text{combo}} = \Delta \nu_{\text{EDM}} = \nu_{\text{MT}} - \nu_{\text{MB}} - \frac{1}{3} \left(\nu_{\text{OT}} - \nu_{\text{OB}} \right)$$

is sensitive to the EDM, while canceling first and second order magnetic field gradient noise in the *y*-direction

Previous result

• The last generation of the experiment found

$$d(^{199}{
m Hg}) = (0.49 \pm 1.29_{
m stat} \pm 0.76_{
m syst}) imes 10^{-29}~e~{
m cm}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Interpret as an upper bound of $|d(^{199}{
m Hg})| < 3.1 imes 10^{-29}~e~{
m cm}$

Table of Contents

New dataset

- Expect factor of 4 improvement on EDM bound
- Currently, "B-even" effect is largest systematic error

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

"B-Even" Systematic

• Can run with B pointing up or down; E = 6 or 10 kV/cm

Image credit: Brent Graner

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- EDM is proportional to slope line should pass through 0!
- *B*-independent offset is partially resolved: $\sim 2\sigma$

"B-Even" Systematic

Possible causes of the *B*-even effect:

- Some component of the B-field doesn't flip
- Cell-micromotion correlated with HV
- Other ideas: Shields relaxing, B₀ not stable

Analysis:

• OT, MT contribute much more to the effect

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Do they see more gradient?

Table of Contents

1 Introduction

- 2 Experimental Setup
- 3 Current Dataset and Systematics
- 4 Magnetic Field Gradients

5 Conclusion

Setup

• Want to measure gradients in x, z directions by translating cells

Image credit: Clark Griffith

Setup

Original vessel:

Translation apparatus:

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

4-cell measurement of dB_y/dx

- With $\mathbf{E} = \mathbf{0}$, cells act as magnetometers
- Look at frequency differences between cells
 - Common-mode rejection (drift)
 - Calculations done with cell differences
- Note: largest gradients on top, B reverses well

Magnetic field gradients in the x-direction

Measuring dB_y/dz

• Do a similar measurement, but translating in the z-direction...

Interpretation

• Focus on x-direction (larger gradients)

Non-reversing component of B:

- Quantify non-reversing part of *B*-field using the feedthrough to our EDM signal
- $B_{\rm even}/B_{\rm odd} \approx 0.002$ not enough to explain the *B*-even effect

Cell micromotion:

ullet Can estimate magnetic field gradients in the apparatus: \sim 0.2 $\mu {\rm G/cm}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Frequency shifts $\sim 10^{-10} \implies$ cell motion ~ 10 nm could cause B-even effect

How to improve this?

• Cell micro-motion isn't a problem if B-field is uniform

• Top two cells contribute most to B-even systematic

- Measured larger gradient on the top two cells
- Closest to the welds in the magnetic shields!

Solution: Mu-metal foil magnetic shield

- Plan: add additional layer of magnetic shielding (innermost layer)
- Use 2 mil thick mu-metal foil, so no welds
- Calculate² increase in shielding factor of 3-5 times (depending on μ_r of the foil)
- More uniform shield means more uniform field

²T. J. Sumner, J. M. Pendlebury and K. F. Smith, J. Phys. D: Appl. Phys 26 1095 (1987) → < = → < = → ○ < ○

Table of Contents

1 Introduction

- 2 Experimental Setup
- 3 Current Dataset and Systematics
 - 4 Magnetic Field Gradients

Conclusion

- Measured magnetic field gradients to explore the cause of our *B*-even systematic
- Plan to add new thin and more uniform magnetic shield to make the field more uniform

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Figure out a way to take similar measurements translating in the y-direction

Acknowledgements

• Blayne Heckel, Jennie Chen, Brent Graner, Eric Lindahl

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Ron Musgrave
- Deep, Alejandro, Linda, Farha
- University of Washington and NSF
- REU participants