Computational X-Ray Spectroscopy Summer 2015 UW INT Physics REU

Jonathan Curtis

University of Rochester

August 19th, 2015

Table of Contents

1 [Background](#page-2-0)

- [X-Ray Spectroscopy](#page-3-0)
- [X-Ray Theory](#page-5-0)

2 [Project](#page-11-0)

- [Sexithiophene](#page-12-0)
- C_{60} [Fullerene](#page-17-0)
- **[Transition Metals](#page-23-0)**

3 [Future Efforts](#page-26-0)

Section 1

[Background](#page-2-0)

- Use X-Rays to investigate molecular physics
- **Probes electronic structure**
- Chemical properties
- Study collective excitations
- \blacksquare Important applications in nano-science, materials science, chemical physics, and condensed matter physics

What is X-Ray Photoelectron Spectroscopy

- **Photoelectric effect**
- Intensity of ejected electrons vs. kinetic energy
- Study quasi-particle excitations
- Experiments conducted in high-vacuum
- Often use high-energy synchrotron x-rays

Goal

To calculate a spectrum from first principles and have it agree with experiment.

Molecular Physics

- Typically \sim 10 atoms
- Typically \sim 10 electron per atom
- **Many** body problem
- Often ignore core electrons
- **Often ignore nuclear motion**

Fermi Rule

The XPS photocurrent is given by $J_k(\omega)^1$

$$
J_k(\omega) = \sum_f |\langle f, N-1; \vec{k} | \hat{H}_{\text{dipole}} | 0, N \rangle|^2 \delta(\omega - \omega_s)
$$
 (1)

Looks simple to calculate! But it isn't...

- Need eigenstates
- Must sum over many states
- **Photoelectron not seperable**
- Core-hole also interacts

¹ J.J. Kas, F.D. Vila, J.J. Rehr, S.A. Chambers, Physical Review B 91, 12112(R) (2015): d.o.i. 10.1103/PhysRevb.91.121112

Electrons and Photons

Figure 1: A diagram demonstrating the XPS interaction

Image from https://wiki.utep.edu/pages/viewpage.action?pageId=51217584

Excitations

- **Appear as secondary "satellite" peaks**
- **Due to inelastic losses**
- Collective excitations absorb energy
- **Mostly plasmons**

Plasmon

Quanta of valence electron oscillation. Analogous to phonons and lattice vibrations. Couples to both photoelectron and core-hole.

Spectral Function $A(\omega)$

- Roughly proportional to $J_k(\omega)$
- Represents distribution of energies
- **Are normalized to one**
- Calculated using density fluctuations

$A(\omega)$

$$
A(\omega) = -\frac{1}{\pi} \text{Im} \int d\omega e^{i\omega t} G_c(t) \tag{2}
$$

where $G_c(t)$ is the Green's function for the core-hole ²

^{2&}lt;br>Ibid

Project Background

- Used RT-SIESTA
- \blacksquare DFT/TD-DFT calculation of electron density
- **Pseudo-potentials**
- Basis set of LCAO
- Relax to ground state
- Add core-level Coulomb potential
- Calculate density fluctuations in real time
- Effective to \sim 300 atoms

Section 2

[Project](#page-11-0)

Subsection 1

[Sexithiophene](#page-12-0)

Sexithiophene

Figure 2: Sexithiophene

- **Planar molecule**
- Rotationally symmetric 180° about midpoint
- Formula is $C_{24}S_6H_{10} \Rightarrow 250e^-$
- **Possible uses as organic semiconductor**
- **Label Sulphur from outermost (S1) to innermost (S3)**

Experimental Data

Figure 3: The "On Res" curve is the XPS for sexithiophene on the Sulphur resonant energy.

Computed Results

Sexithionhene XPS on Sulphur Resonance

Figure 4: The XPS for each individual sulphur atom and their sum $17/35$

Subsection 2

 $\overline{C_{60}}$ [Fullerene](#page-17-0)

C_{60} Fullerene

Image from https://upload.wikimedia.org/wikipedia/commons/4/41/C60a.png

C_{60} Fullerene Crystal

Figure 6: C_{60} fcc crystal

Image from https://en.wikipedia.org/wiki/Buckminsterfullerene#/media/File:Fullerite structure.jpg 20 / 35

- **Most common of the fullerenes**
- Molecule has diameter \sim 1 nm
- Forms face-centered cubic (fcc) crystals in solid phase
- **Natural semi-conductor**
- Can be doped to become super-conducting
- **Nano-engineering**

Measured XPS³

³ J.A. Leiro, M.H. Heinonen, T. Laiho, I.G. Batirev, Journal of Electron Spectroscopy and Related Phenomena 128 (2003) $22\,/\,35$

Comparison

C60 XPS Data vs. Experiment

Figure 8: Comparison of calculated and measured. Centered and rescaled to same sizes $23 / 35$

Subsection 3

[Transition Metals](#page-23-0)

- **Metals like Ni, Co, and Fe**
- **Many-body effects are very important**
- **Possible applications to highly-correlated systems**
- **High Tc**" super conductors
- **EXP** Crystalline structure requires band-theory in addition to molecular theory

Cobalt XPS

Cobalt XPS

Figure 9: Calculated Cobalt XPS

Section 3

[Future Efforts](#page-26-0)

Sexithiophene

- **n** Include ghost atoms
- Examine different core charges
- **Density fluctuations at frequency**
- **Ongoing invstigation**
- **Examine crystal effects**
- **Compute XAS with many body effects**
- \blacksquare Include extrinsic interactions
- Compare with graphene

Transition Metals

- Check for supercell convergence
- **Analyze other metals**
- Compare to experiment
- Check accuracy of quasi-peak weights
- **Apply to correlated materials**

I would like to acknowledge the Condensed Matter Theory group for all the help they have given me over the summer. In particular, I would like to thank John Rehr, Joshua Kas, and Fernando Vila for all of their help and guidance. I'd also like to thank Deep Gupta, Alejandro Garcia, Gray Rybka, Shih-Chieh Hsu, Linda Vilett, Farha Habib, and the INT program for organizing this REU. Finally, I would like to acknowledge Ron Musgrave for his guidance through the machine shop program.

Section 4

[Backup Slides](#page-31-0)

Calculation

Energy Spectrum⁴

SIESTA outputs potential energy of density fluctuations $\Delta(t)$. First compute the energy spectrum $\beta(\omega)$

$$
\beta(\omega)/\omega = \text{Re}\int dt e^{-i\omega t} \Delta(t) \tag{3}
$$

and then the cumulant $C(t)$

$$
C(t) = \int \beta(\omega) \left(\frac{e^{i\omega t} - i\omega t - 1}{\omega^2} \right) d\omega \tag{4}
$$

Finally, the spectral function

$$
A(\omega) = -\frac{1}{\pi} \text{Re} \int e^{i\omega t} e^{C(t)} dt
$$
 (5)

⁴ J.J. Kas, F.D. Vila, J.J. Rehr, S.A. Chambers, Physical Review B 91, 12112(R) (2015): d.o.i. 10.1103/PhysRevb.91.121112 33 / 35

Calculated XPS

Figure 10: Calculated XPS of C60. Quasi-peak weight of $Z = 58.4\%$

34 / 35

Peak Weights

Table 1: Quasi-particle peak weights, in increasing order of satellite weight. Z for metals may be inaccurate.

S1, S2, S3 refer to the various Sulphurs in sexithiophene