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Section 1

Background



What Is X-Ray Spectroscopy?

Use X-Rays to investigate molecular physics
Probes electronic structure
Chemical properties

Study collective excitations

Important applications in nano-science, materials science,
chemical physics, and condensed matter physics



What is X-Ray Photoelectron Spectroscopy

Photoelectric effect

Intensity of ejected electrons vs. kinetic energy

|

|

m Study quasi-particle excitations

m Experiments conducted in high-vacuum
|

Often use high-energy synchrotron x-rays

To calculate a spectrum from first principles and have it agree with
experiment.



Molecular Physics

Typically ~ 10 atoms
Typically ~ 10 electron per atom
Many body problem

Often ignore core electrons

Often ignore nuclear motion



Electrons and Photons

The XPS photocurrent is given by Ji(w)?

Je(w) =D [(F,N = 1; k |Aaipotel0, N)Po(w — ws) (1)
f
Looks simple to calculate! But it isn't...
m Need eigenstates
m Must sum over many states
m Photoelectron not seperable

m Core-hole also interacts

1
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Electrons and Photons

Emitted Auger electron

@ Photoelectron

X-ray (

hoton)
.

Figure 1: A diagram demonstrating the

Image from https://wiki.utep.edu/pages/viewpage.action?pageld=51217584

Binding Energy

XPS interaction



Excitations

m Appear as secondary “satellite” peaks
m Due to inelastic losses

m Collective excitations absorb energy

[

Mostly plasmons

Plasmon

Quanta of valence electron oscillation. Analogous to phonons and
lattice vibrations. Couples to both photoelectron and core-hole.



Spectral Function A(w)

m Roughly proportional to Ji(w)
m Represents distribution of energies
m Are normalized to one

m Calculated using density fluctuations

A(w)

Alw) = —%Im / duwe™t G (t) 2)

where G.(t) is the Green's function for the core-hole 2
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Project Background

m Used RT-SIESTA
m DFT/TD-DFT calculation of electron density
m Pseudo-potentials

m Basis set of LCAO

m Relax to ground state

m Add core-level Coulomb potential

m Calculate density fluctuations in real time

m Effective to ~ 300 atoms
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Section 2
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Subsection 1
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Sexithiophene

Figure 2: Sexithiophene
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What is sexithiophene?

Planar molecule
Rotationally symmetric 180° about midpoint
Formula is Co4SeH19 = 250e™

Possible uses as organic semiconductor

Label Sulphur from outermost (S1) to innermost (S3)
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Experimental Data
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Figure 3: The "On Res” curve is the XPS for sexithiophene on the
Sulphur resonant energy.
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Computed Results

Sexithiophene XPS on Sulphur Resonance
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Figure 4: The XPS for each individual sulphur atom and their sum
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Subsection 2

Cso Fullerene
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Ceo Fullerene Crystal

Figure 6: Cgo fcc crystal

Image from https://en.wiki .org/wiki/B i /media/File:Fullerite_structure.jpg
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What is Fullerene?

Most common of the fullerenes

Molecule has diameter ~ 1 nm

Forms face-centered cubic (fcc) crystals in solid phase
Natural semi-conductor

Can be doped to become super-conducting

Nano-engineering
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Measured XPS3
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Figure 7: Measured C60 XPS

3
J.A. Leiro, M.H. Heinonen, T. Laiho, |.G. Batirev, Journal of Electron Spectroscopy and Related Phenomena 128 (2003) 22/35



Comparison

C60 XPS Data vs. Experiment
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Figure 8: Comparison of calculated and measured. Centered and rescaled
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Subsection 3

Transition Metals
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Transition Metals

Metals like Ni, Co, and Fe

Many-body effects are very important

Possible applications to highly-correlated systems
"High Tc" super conductors

Crystalline structure requires band-theory in addition to
molecular theory
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Cobalt XPS

Cobalt XPS
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Figure 9: Calculated Cobalt XPS
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Section 3

Future Efforts
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Sexithiophene

Include ghost atoms
Examine different core charges

Density fluctuations at frequency

Ongoing invstigation
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Examine crystal effects

Compute XAS with many body effects
Include extrinsic interactions

Compare with graphene
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Transition Metals

Check for supercell convergence
Analyze other metals
Compare to experiment

Check accuracy of quasi-peak weights

Apply to correlated materials
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Section 4

Backup Slides
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Calculation

Energy Spectrum*

SIESTA outputs potential energy of density fluctuations A(t).
First compute the energy spectrum [(w)

B(w)/w = Re / dte~“tA (1) (3)
and then the cumulant C(t)

e = [ p) ( e 4)

Finally, the spectral function

Alw) = —%Re/e"”tec(t)dt (5)
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Calculated XPS

C60 Calculated XPS
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Figure 10: Calculated XPS of C60. Quasi-peak weight of Z = 58.4%
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Peak Weights

Material 7 1-7
S1 .768 232
52 .666 334
S3 .667 .333
Geo .584 416
Fe .316 .684
Co .283 717
Ni 147 .853

Table 1: Quasi-particle peak weights, in increasing order of satellite
weight. Z for metals may be inaccurate.

S1, 52, 53 refer to the various Sulphurs in sexithiophene
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