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Section 1

Background
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What Is X-Ray Spectroscopy?

Use X-Rays to investigate molecular physics

Probes electronic structure

Chemical properties

Study collective excitations

Important applications in nano-science, materials science,
chemical physics, and condensed matter physics
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What is X-Ray Photoelectron Spectroscopy

Photoelectric effect

Intensity of ejected electrons vs. kinetic energy

Study quasi-particle excitations

Experiments conducted in high-vacuum

Often use high-energy synchrotron x-rays

Goal

To calculate a spectrum from first principles and have it agree with
experiment.
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Molecular Physics

Typically ∼ 10 atoms

Typically ∼ 10 electron per atom

Many body problem

Often ignore core electrons

Often ignore nuclear motion
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Electrons and Photons

Fermi Rule

The XPS photocurrent is given by Jk(ω)1

Jk(ω) =
∑
f

|〈f ,N − 1; ~k |Ĥdipole|0,N〉|2δ(ω − ωs) (1)

Looks simple to calculate! But it isn’t...

Need eigenstates

Must sum over many states

Photoelectron not seperable

Core-hole also interacts

1
J.J. Kas, F.D. Vila, J.J. Rehr, S.A. Chambers, Physical Review B 91, 12112(R) (2015): d.o.i. 10.1103/PhysRevb.91.121112
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Electrons and Photons

Figure 1: A diagram demonstrating the XPS interaction

Image from https://wiki.utep.edu/pages/viewpage.action?pageId=51217584
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Excitations

Appear as secondary “satellite” peaks

Due to inelastic losses

Collective excitations absorb energy

Mostly plasmons

Plasmon

Quanta of valence electron oscillation. Analogous to phonons and
lattice vibrations. Couples to both photoelectron and core-hole.
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Spectral Function A(ω)

Roughly proportional to Jk(ω)

Represents distribution of energies

Are normalized to one

Calculated using density fluctuations

A(ω)

A(ω) = − 1

π
Im

∫
dωe iωtGc(t) (2)

where Gc(t) is the Green’s function for the core-hole 2

2
Ibid
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Project Background

Used RT-SIESTA

DFT/TD-DFT calculation of electron density

Pseudo-potentials

Basis set of LCAO

Relax to ground state

Add core-level Coulomb potential

Calculate density fluctuations in real time

Effective to ∼ 300 atoms
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Section 2

Project
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Subsection 1

Sexithiophene
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Sexithiophene

Figure 2: Sexithiophene
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What is sexithiophene?

Planar molecule

Rotationally symmetric 180◦ about midpoint

Formula is C24S6H10 ⇒ 250e−

Possible uses as organic semiconductor

Label Sulphur from outermost (S1) to innermost (S3)
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Experimental Data

Figure 3: The “On Res” curve is the XPS for sexithiophene on the
Sulphur resonant energy.
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Computed Results

Figure 4: The XPS for each individual sulphur atom and their sum
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Subsection 2

C60 Fullerene
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C60 Fullerene

Figure 5: C60 Fullerene “Bucky-ball”

Image from https://upload.wikimedia.org/wikipedia/commons/4/41/C60a.png
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C60 Fullerene Crystal

Figure 6: C60 fcc crystal

Image from https://en.wikipedia.org/wiki/Buckminsterfullerene#/media/File:Fullerite structure.jpg
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What is Fullerene?

Most common of the fullerenes

Molecule has diameter ∼ 1 nm

Forms face-centered cubic (fcc) crystals in solid phase

Natural semi-conductor

Can be doped to become super-conducting

Nano-engineering
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Measured XPS3

Figure 7: Measured C60 XPS

3
J.A. Leiro, M.H. Heinonen, T. Laiho, I.G. Batirev, Journal of Electron Spectroscopy and Related Phenomena 128 (2003) 22 / 35



Comparison
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Figure 8: Comparison of calculated and measured. Centered and rescaled
to same sizes
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Subsection 3

Transition Metals
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Transition Metals

Metals like Ni , Co, and Fe

Many-body effects are very important

Possible applications to highly-correlated systems

“High Tc” super conductors

Crystalline structure requires band-theory in addition to
molecular theory
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Cobalt XPS
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Cobalt XPS

Figure 9: Calculated Cobalt XPS
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Section 3

Future Efforts
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Sexithiophene

Include ghost atoms

Examine different core charges

Density fluctuations at frequency

Ongoing invstigation
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C60

Examine crystal effects

Compute XAS with many body effects

Include extrinsic interactions

Compare with graphene
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Transition Metals

Check for supercell convergence

Analyze other metals

Compare to experiment

Check accuracy of quasi-peak weights

Apply to correlated materials
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Section 4

Backup Slides
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Calculation

Energy Spectrum4

SIESTA outputs potential energy of density fluctuations ∆(t).
First compute the energy spectrum β(ω)

β(ω)/ω = Re

∫
dte−iωt∆(t) (3)

and then the cumulant C (t)

C (t) =

∫
β(ω)

(
e iωt − iωt − 1

ω2

)
dω (4)

Finally, the spectral function

A(ω) = − 1

π
Re

∫
e iωteC(t)dt (5)

4
J.J. Kas, F.D. Vila, J.J. Rehr, S.A. Chambers, Physical Review B 91, 12112(R) (2015): d.o.i. 10.1103/PhysRevb.91.121112 33 / 35



Calculated XPS

Figure 10: Calculated XPS of C60. Quasi-peak weight of Z = 58.4%
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Peak Weights

Material Z 1− Z

S1 .768 .232
S2 .666 .334
S3 .667 .333

C60 .584 .416

Fe .316 .684
Co .283 .717
Ni .147 .853

Table 1: Quasi-particle peak weights, in increasing order of satellite
weight. Z for metals may be inaccurate.

S1, S2, S3 refer to the various Sulphurs in sexithiophene
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