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Via a real-time, cumulant based approach, the X-Ray Photoelectron Spectrum (XPS) for molecu-
lar C60 Buckminsterfullerene, Nickel, Iron, and Cobalt are computed. Good agreement with exper-
iment is found in the case of C60. We also use this approach to compute quasi-particle peak shifts
and weights. We find that in the case of the transition metals, the analytic calculation appears to
be an overestimate of satellite weight when compared to direct integration of the spectral functions.

I. INTRODUCTION

The field of X-Ray spectroscopy, and in particular, the
technique of X-Ray Photoelectron Spectroscopy (XPS)
has seen widespread success in its application to prob-
lems in nano-science, materials science, chemistry, and
condensed matter physics. Of particular importance to
these fields is the ability to accurately and efficiently com-
pute theoretically predicted spectra, against which ex-
perimentally measured spectra may be compared. XPS,
as an experimental technique, allows one to perform an
in-depth analysis of the many-body physics involved in
the excitations of a sample. Since the physics that un-
derlies these many-body interactions is inherently com-
plex, computing X-Ray spectra, and in particular, XPS,
is often a matter of choosing appropriate approximation
techniques and approaches. For instance, though the
well-known “GW” approximation (GWA) of Hedin [2, 3]
is useful for studying the main quasi-particle features of
many systems, as was pointed out in [1], the standard
GWA often fails to correctly predict the structure of the
satellite spectra in photoelectric emission processes. To
remedy this, a new approach, based on a function known
as “the cumulant” was employed [6, 8]. This approach
has since been employed successfully in many instances
[1, 4, 6] and has been used to predict both main quasi-
particle features as well as satellite structures. In this this
project, a cumulant based approach was used to study
the photoelectric emission spectrum for C60 fullerene in
the gas phase as well as the transition metals Fe, Ni, and
Co in their metallic (crystalline) phases.

A. Fullerene

Buckminsterfullerene, henceforth referred to simply as
“C60,” is an allotrope of Carbon (atomic number 6) com-
prised of 60 atoms bonded into a truncated icosahedron
resembling a soccer ball [5]. Though C60 was only dis-
covered recently (1985), this molecule, and the related
family of “fullerene” allotropes have already been exam-
ined extensively due to the variety of remarkable prop-
erties they have been shown to exhibit. C60 can exist
in both a gaseous phase, and in a solid phase (fullerite),

in which it forms a face centered cubic (fcc) crystalline
structure that is naturally an n-type semiconductor. See-
ing as collective excitations such as plasmons, polarons,
and phonons play a crucial role in the behavior of such
materials, it is important to understand the nature of
many-body effects in fullerite. Though it would be ideal
to study the case of crystalline fullerite, such as system
would consist of of upwards of ∼ 60 × 8 ≈ 480 atoms
per unit cell. Thus, due to computational limitations we
have restricted our study to C60 in the gaseous phase as
a proxy for the case of fullerite. This approximation will
be justified post-hoc via comparison with experiment.

B. Transition Metals

Whereas C60 may present itself as a fallaciously com-
plex system to study, transition metals provide the op-
posite. Broadly speaking, transition metals are elements
that have a valence shell comprised of electrons in the 3d
orbitals (though this usage of orbitals becomes question-
able for elements with atomic number this large). Despite
their often simplistic crystalline structures and metal-
lic bonding mechanisms, strongly-correlated states and
non-trivial band structures can lead to complex and in-
teresting many-body effects in transition metal systems
[10]. Furthermore, due to their widely varying chemi-
cal, electromagnetic, and spectral properties, the study
of transition metals from first-principles calculations is
important to a variety of fields. Specifically, we will fo-
cus on pure metal systems of elements Iron (atomic num-
ber 26), Cobalt (atomic number 27), and Nickel (atomic
number 28). Our main focus is on the plasmon struc-
tures of these metals, where will show that the satellite
and main quasi-particle structures are nearly insepara-
ble, indicating the presence of satellite excitations with
very little to no gap above the main quasi-particle exci-
tation peak. Under these circumstances, it seems to be
more accurate to compute the quasi-particle peak weight
by direct integration of the spectral function around the
main peak.
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II. THEORY

For convention, we will use atomic units of e = ~ =
me = 1 throughout this paper unless otherwise indicated.
The theory behind these calculations is based on the cu-
mulant expansion outlined in [1, 4]. Namely, that for a
core-level XPS, the photo-electron current (which is what
is measured in an XPS experiment) may be approximated
well by

Jk(ω) = Ac(ω)

where Ac(ω) is the core-level spectral function, given by

Ac(ω) =
1

π
Im

∫
eiωtGc(t)dt (1)

where Gc(t) is the core-hole Green’s function. The inno-
vation of the cumulant approach [8], as compared with
the GWA, is that the core-hole Greens function may be
written as

Gc(t) = iθ(t)e−iωct+C(t) (2)

where ωc is the core-hole energy, θ(t) is the Heaviside
step function, and C(t) is the cumulant (see [4, 6, 8]).
This function can be expressed in terms of the neutral
quasi-boson excitation spectrum, β(ω) [4], by

C(t) =

∫ ∞
0

β(ω)

(
eiωt − iωt− 1

ω2

)
dω (3)

Note that C(t) satisfies the following relations:

C(−t) = C(t)∗

C(0) = 0

C ′(0) = 0

Also note that the spectral function is guaranteed to
be area-normalized to unity, provided that C(0) = 0.
To obtain β(ω), we take the Fourier transform of “core-
response” function, ∆c(t) using the relations[4]

β(ω) = ωRe

∫
dte−iωt∆c(t) (4)

The core-response function is computed as

∆c(t) =

∫
d3rV (~r)δρ(~r, t) (5)

where δρ(~r, t) is the change in electron density from equi-
librium (due to the core-hole perturbation) and V (~r) is
the potential due to the presence of the core-hole. This
function ∆c(t) is computed using RT-TDDFT via a mod-
ified version of the SIESTA framework [9]. The details of
this simulation procedure will be examined in more depth
in the next section; for now, it suffices to know that the
function ∆c(t) is readily available. It is important to
note that since the simulations only involve the valence

electron density response, the calculated spectrum only
incorporates intrinsic interactions and neglects the in-
teractions with the outgoing core-hole electron (extrinsic
interactions).

It is useful to consider the excitation spectrum β(ω) in
its own right in addition to the role it plays in computing
the spectral function. This is because this spectrum is di-
rectly related to the density-density correlation function
[4],

χ(~r, ~r ′;ω) = i

∫ ∞
0

e−iωt〈ρ(~r, t)ρ(~r ′, 0)〉

by the relation

β(ω) =

∫
d3rd3r′V (~r)V (~r ′)Im χ(~r, ~r ′;ω) (6)

In addition to describing the excitation spectrum, it is
possible to compute both the quasi-particle peak shift
∆E = ωqp − ωc and weight Z from β(ω) [3] using the
relations

Z = exp

(
−
∫ ∞
0

β(ω)

ω2
dω

)
∆E =

∫ ∞
0

β(ω)

ω
dω

(7)

We will see that these computations, while accurate for
the C60, are a bit of an under-estimate in the case of the
transition metals. As we will see satellite structures oc-
cur without significant gap above the main quasi-particle
peak, and this leads to a “blending” of the main quasi-
particle peak and the satellite peaks.

III. METHODS

As previously mentioned, the actual calculation of the
density response function, ∆c(t) was performed using
real-time time-dependent density functional theory (RT-
TDDFT) via a modified SIESTA fork. This modifica-
tion, known as RT-SIESTA, uses a real-time, real-space
approach and is built up off of the SIESTA ground state
DFT package [9]. Time propagation of the density is
done using a predictor-corrector Crank-Nicholson oper-
ator [4] and densities are expressed using a projection
onto a linear combination of localized atomic orbitals.
Core electrons are incorporated into the nuclear poten-
tials via the use of pseudo-potentials that are required
to have compact support. Since we are approximating
the presence of a core-hole in the 1s state, we also ne-
glect any internal structure of the core-hole potential,
treating it as a Yukawa potential that is flattened about
the origin to avoid any divergences [4]. Typically, the
system is relaxed into the ground state electron density
using a self-consistency loop. Once it reaches the ground
state, the density response is computed by switching on
the core-hole potential V (~r), simulating the presence of



3

a core-hole caused by the ejection of a photoelectron at
time t = 0. The density is then propagated forward in
time and at each time step the core response ∆c(t) is
measured.

Before using ∆c(t) in formula (4), we must subtract
off the average value and add in a spectral damping term
to render it suitable for the numerical Fourier transform.
In addition to the spectral widening applied (typically
Gaussian broadening), we also employ a frequency depen-
dent Gaussian widening with variance σ = 1√

2α|ω| . This

widening is meant to replace some of the lost spectral
density in the higher energy states due to the use of the
localized orbital basis, which cannot replicate the pres-
ence of continuum states. Finally, we employ additional
broadening terms (typically Lorentzian) when evaluating
equation (1) again, to render the functions suitable for
numerical Fourier transform.

We also compare the computation of the quasi-particle
peak weights by integration of β(ω) with the integration
of the XPS spectrum. Specifically, we will compare the
theoretically calculated Z value against the calculation
of the spectral weight for energies E > ωqp + ωthreshold.
We will use ωthreshold = −2 eV. That is, we will compute

Z̃threshold =

∫ ∞
ωthreshold

Ac(ω)dω (8)

where we have shifted Ac(ω) to peak at ωqp, and compare

Z with Z̃threshold.

IV. RESULTS

A. C60 XPS

The experiment we compare out spectral results to is
[7]. We first demonstrate some of the steps involved in
the calculation of the spectral function. In figure (1)
you can see the core response (after subtracting off aver-
ages and adding uniform spectral broadening). Note how
there is a very large response in the first few fractions of
a fs, but this quickly dies off as the system enters equi-
librium. After obtaining the core response, we calculate
the excitation spectrum density β(ω). As an example,
we present β for C60 in figure (2). From this, we calcu-
late a quasi-particle peak weight and shift of Z = .586
and ∆E = 10.7535 eV. Finally, we compute the spectral
function. In figure (3) we display the calculated spec-
tral function as well as digitized experimental data from
[7]. We have performed a uniform rescaling of the the-
ory to match the data normalization. The agreement in
shape between the two is remarkably good, especially for
low-energy satellite structures. It appears that at higher
energies, the location of the satellite structures is not as
accurate. In fact, it appears that the theoretically pre-
dicted location of satellite peaks becomes less accurate
as energy increases. This could be due to any number
of phenomena, including: a lack of extrinsic effects, the

use of gaseous fullerene instead of crystalline fullerite,
or a byproduct of the simulation techniques. Neverthe-
less, the agreement is still impressive, certainly justifying
our approximation of crystalline fullerite with gaseous
fullerene, at least to first order. By employing a numer-
ical peak-finding algorithm the quasi-particle peak shift
was found to be 10.7505 eV, in accordance with the re-
sult of equation (7). We also found a quasi-particle peak

weight by direct integration of Z̃threshold = .573. This is
in good agreement with the theoretically predicted value,
as we would expect since there is a clear distinction be-
tween the satellite structures and the main peak features.
Note that the quasi-particle peak has been shifted by ∆E
in all of the plots.

B. Transition Metal XPS

We now turn our attention to the transition metals.
We can already tell by looking at the excitation spec-
tra β(ω) in figure (4) that these will have very different
spectra from C60. In particular, we note that the metals
appear to have a “two-peak” structure whereas C60 had
a “single-peak” structure. In addition to computing the
spectral functions from these, we also use these spectra
to compute quasi-particle peak shifts and weights (table
I).

Note that in all the spectra in figure (5), the predomi-
nant low energy satellite behavior is a broad asymmetric
shoulder on the trailing edge of the quasi-particle peak.
In the case of Nickel and Iron we can see there is a
small, low-energy excitation at around 6 eV below the
main peak. In the case of Cobalt, there is also small
low-energy excitation feature, but this occurs at around
12 eV behind the main peak. All of these spectra appear
to exhibit a relatively high degree of asymmetry about
their main peak. To see this in more detail, we present a
comparison of the “integrated” spectral functions in fig-
ure (6). By integrated spectral function we simply mean
I(ω) =

∫ ω
−∞A(ω′)dω′. We also compare these against

the fullerene results. Note how the integrated density
experiences a rapid increase at the main peak. Simply
by visual inspection, it is easy to see that for C60 this
jump accounts for over 50% of the total spectral weight,
in accordance with a Z weight of .58. This is in con-
trast with the metals, where we can see that the increase
due to the main peak is much less pronounced, usually
achieving over 50% spectral weight by −5 eV.

The calculated quasi-particle peak weights and shifts
are in table (I), along with the values for fullerene. We
also include the computed quasi-particle weight by inte-
gration as well as the percent difference between the two
(interpreting Z̃threshold as the accepted value). The dis-
crepancy for the transition metals should be clear, espe-
cially when compared against fullerene. Though in gen-
eral, we would expect the metallic systems to have low
main-peak weights, the numbers calculated by equation
(7) are anomalously low. Comparing between fullerene,
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which has a clear distinction between satellite peaks and
the main peak, we see that the calculation by way of
equation (8) and equation (7) only disagree by less than
2%. On the other hand, for metals, it appears that equa-
tion (7) can underestimate the quasi-particle weight by
over 20%. This discrepancy may be due in part to the
numerical procedure used to compute the weights. For
finite sample size, lower energy features will inevitably
be lost due to a minimum frequency resolution. Thus,
for the metallic systems, when the integral for Z is com-
puted, it is possible that these missing low-energy struc-
tures are discounted, yielding an underestimate for the
quasi-particle energy. This discrepancy may only present
itself when these low-energy excitations account for a
large amount of spectral weight, as would be the case for
these metals. Another explanation is that these compu-
tations were not carried out on large enough super-cells
and that we are simply seeing residual boundary and edge
effects. The investigation of this discrepancy is still an
ongoing aspect of this research.

V. SUMMARY AND FUTURE WORK

Via the use of our real-time cumulant based approach,
we have have been able to compute the C60 core-level
XPS with remarkable accuracy. In addition, we compute
a quasi-particle peak weight and shift of Z = .586 and
∆E = 10.75 eV. We also note that the low-energy exci-
tations are reproduced well by this procedure, while the
higher energy features are still reproduced, but at incor-
rect energies. This is likely due to a lack of extrinsic
affects as well as neglecting crystalline effects. Overall,
the fullerene quasi-particle peak still dominates the spec-
trum, with almost 60% of the spectral weight. We also

have shown that the calculation of Z via equation (7) is in
agreement with a direct integration of the XPS spectrum
in this case. This is in contrast with the metals, which
don’t exhibit such a clear distinction between satellite
peaks and the main quasi-particle peak. In these cases,
we see that the analytic calculation of the quasi-particle
peak weight via equation (7) leads to a drastic underes-
timate of the quasi-particle peak weight, when compared
against a direct integration of the spectral function. The
exact reason for this discrepancy is still not clear.

Possible directions of future work include simulating
crystalline fullerite, determining a more reliable method
of computing the spectral weight in the transition metals,

Sample Z Z̃threshold %∆ ∆E
Fe .316 .397 20.4% 14.433 eV
Co .283 .437 35.2% 13.873 eV
Ni .148 .351 57.8% 14.491 eV
C60 .586 .573 1.7% 10.753 eV

TABLE I: Calculated quasi-particle peak weights and
shifts for transition metals

increasing the number of unit cells used in the metal cal-
culations, and using these computed spectral functions
to compute many-body corrections to calculated single-
particle X-Ray Absorption Spectra (XAS).
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