

Neutrinos from heaven and hell

Nikolai Tolich, University of Washington

What Are Neutrinos?

Electron Energy

- In 1930 Pauli postulated the particle we now call the neutrino.
- Pauli's particle would have almost zero mass and be almost impossible to observe.
- In 1956 the impossible happened as Reines and Cowan observed neutrinos from a nuclear reactor, for which they got the 1995 Nobel prize in physics.

Beta-decay

 β⁻-decay is the conversion of a bound neutron into a proton with the emission of an electron and an electron antineutrino

 $^{A}_{Z}X \rightarrow ^{A}_{Z+1}Y + e^{-} + \overline{\nu}_{e}$

- β^+ -decay is the conversion of a bound proton into a neutron with the emission of a positron and an electron neutrino ${}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + e^+ + v_e$
- Electron-capture is similar to β^+ -decay but instead of producing a positron, an electron is captured ${}^{A}_{Z}X + e^- \rightarrow {}^{A}_{Z-1}Y + v_e$

Astrophysical energy sources

Sun luminosity 384×10²⁴ W

Earth luminosity 46×10¹² W

Mount St. Helens

Power density at Earth's surface

Solar average 240 Wm⁻²

Earth average 90×10⁻³ Wm⁻²

The Sun

Solar fusion ($4^{1}H \rightarrow {}^{4}He + 2e^{+} + 2v_{e}$)

PP fusion Proton γ Gamma Ray Neutron V Neutrino Positron **CNO cycle**

Solar pp chain reactions

Solar neutrino energy spectrum

The Earth

Radioactivity in the earth

Image: http://www.psrd.hawaii.edu/

- Based on carbonaceous
 chondrites Lyubetskaya &
 Korenaga (2007) predict the
 following concentrations of
 radioactive isotopes in the
 earth's primitive mantle and
 crust
 - U (17±3) ng/g
 - Th (63±11) ng/g
 - K (23±5) μg/g
- The resulting heat production rate is (16±3)×10¹² W

Radiogenic isotopes

Geo-neutrino energy spectrum

Solar neutrinos

Ray Davis

- ³⁷Cl + v_e → ³⁷Ar + e⁻
- ³⁷Ar is a gas which is removed from detector with He carrier gas
- Outside the active volume the ³⁷Ar is detected via
 ³⁷Al + e⁻ → ³⁷Cl + v_e which has a half-life of 35 days

SuperK detector

- 50,000 ton ring-imaging water Cherenkov detector
- SuperK detects solar neutrinos from electron elastic scattering

- $\sigma(v_e) \approx 6 \sigma(v_\mu) \approx 6 \sigma(v_\tau)$
- Strong directionality
- The scattered electron produces a Cherenkov ring

SuperK solar neutrino results

Solar neutrino results

Total Rates: Standard Model vs. Experiment Bahcall-Serenelli 2005 [BS05(OP)]

Neutrino oscillations

- The weak interaction neutrino eigenstates can be expressed as superpositions of definite mass eigenstates
- Mixing matrix is parameterized by three mixing angles, ϑ_{12} , ϑ_{13} , and ϑ_{23} , one CP violating phase δ , and two Majorana phases, α_1 and α_2 .
- Assuming only two neutrino flavors the probability of the neutrino being detected in the same flavor as it was created after travelling a distance L is given by

$$P_{\nu_e \to \nu_e} \left(E_{\nu_e}, L \right) \approx 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E_{\nu_e}} \right)$$

SNO detector

- Located 2 km underground (~70 muons/day) in the Vale Inco Ltd. Creighton Mine near Sudbury, Canada
 - 1 kton D₂O held in 12 m diameter acrylic vessel
 - 18 m diameter support structure holds 9500 PMTs (~60% photocathode coverage)
 - 1.7 kton inner shielding H₂O
 - 5.3 ktons outer shielding H₂O
 - Urylon liner radon seal

Three reactions

SNO Results

8B solar neutrino flux = $(5.25 \pm 0.21) \times 10^{6} \text{ cm}^{-2}\text{s}^{-1}$

Geo-neutrinos

Heat flow

Total heat loss	46 ± 3 TW
Total radiogenic heat production	16 ± 3 TW
Crust + lithosphere heat production	4.9 – 8.8 TW
Present Urey ratio	0.11 - 0.34

Image: by Surachit,

http://en.wikipedia.org/wiki/File:Oceanic_spreading.svg

Neutron inverse-beta-decay

- v_e + p → e⁺ + n
 The positron energy is related to the neutrino energy.
- The positron loses its energy then annihilates with an electron.
- The neutron first thermalizes then is captured by a proton with a mean capture time of ~200ms.

Flux predictions and measurements

	KamLAND [×10 ⁶ cm ⁻² s ⁻¹]	Borexino [×10 ⁶ cm ⁻² s ⁻¹]
S. Enomoto <i>et al.</i> (Total)	4.4	5.2
(Crust)	3.2	4.0
(Mantle)	1.2	1.2
F. Mantovani <i>et al.</i> (Total)	4.0	4.6
Measured	* 4.3 ^{+1.2}	# $7.1_{-2.4}^{+2.9}$

Does not include errors in the model other than scaling the mantle and crust

*Presentation by K. Inoue at Neutrino 2010 *Numbers derived from Phys. Lett. B **687** 299, 2009

Where do the neutrinos come from?

S/N crust and mantle

S/N Ratio: (Crust + Mantle) / Reactor

Image: S. Enomoto

S/N mantle

Image: S. Enomoto

SNO→SNO+

Hold down net

Science goals

- Search for neutrinoless double-beta-decay.
- Neutrino physics:
 - Solar neutrinos
 - Geo antineutrinos
 - Reactor antineutrinos
 - Supernova neutrinos

Pretending to be miners

Very clean miners

Boating in Super-K, not likely again

