Design and Characterization of an Extended Cavity Diode Laser for NV⁻ Center Excitation

John Raihala UW INT REU 21 August 2014

Overview

- Quantum Computing and Nitrogen Vacancy (NV) Centers
- Extended Cavity Diode Laser (ECDL) Design and Construction
- Laser Characterization
- Conclusions and Future Work

Quantum Computing

• A classical bit takes on one of two states. A quantum bit (qubit) can be in any superposition of two basis states.

- QC algorithms with faster runtimes than classical algorithms
 - Shor's algorithm: integer factorization in polynomial time
- Secure communication using quantum key distribution
- Quantum simulation

Types of Qubits

Physical support	Name	Information support	$ 0\rangle$	$ 1\rangle$
Photon	Polarization encoding	Polarization of light	Horizontal	Vertical
	Number of photons	Fock state	Vacuum	Single photon state
	Time-bin encoding	Time of arrival	Early	Late
Coherent state of light	Squeezed light	Quadrature	Amplitude-squeezed state	Phase-squeezed state
Electrons	Electronic spin	Spin	Up	Down
	Electron number	Charge	No electron	One electron
Nucleus	Nuclear spin addressed through NMR	Spin	Up	Down
Optical lattices	Atomic spin	Spin	Up	Down
Josephson junction	Superconducting charge qubit	Charge	Uncharged superconducting island (Q=0)	Charged superconducting island (Q=2e, one extra Cooper pair)
	Superconducting flux qubit	Current	Clockwise current	Counterclockwise current
	Superconducting phase qubit	Energy	Ground state	First excited state
Singly charged quantum dot pair	Electron localization	Charge	Electron on left dot	Electron on right dot
Quantum dot	Dot spin	Spin	Down	Up

http://en.wikipedia.org/wiki/Qubit

Flux qubit, Royal Holloway University (Wikipedia)

Trapped ions, NIST (physicsworld.com)

4

NV Centers

- Point defect in diamond
- NV⁻ charge state: two unpaired electrons form spin S=1 system
- Useful as spin qubits
 - Long electron spin coherence times
 - Electron spins can be manipulated and read out optically

NV- Optical Excitation and Photoluminescence

- Can optically excite NV⁻ on resonance with zero phonon line (ZPL) in order to read out state or manipulate electron spins
- ZPL emission important for entanglement of NV centers

Spectral Diffusion and ZPL Broadening

- Frequency at which any given NV- center emits wanders over time
 - Spectral diffusion caused by sensitivity to changes in local electric field
 - Broadening of ZPL as temperature increases

Extended Cavity Diode Laser

- Tunable narrow linewidth laser
- Will be used to characterize photoluminescence of NV⁻ center samples
- Tunable range must be wider than worstcase frequency range of NV⁻ ZPL

ECDL Design

- Lasing frequency of broadband laser diode tuned using diffraction grating
- First order diffraction from grating coupled back to diode
- Direct reflection coupled out of cavity as beam

ECDL Design

- Littrow configuration: $\theta = \arcsin(\frac{\lambda}{2d})$
- $\lambda = 637 nm$ and $d = (1800 \frac{lines}{mm})^{-1} \Rightarrow \theta \approx 35^{\circ}$
- Thorlabs piezostack responds to 100V signal with 3.0um displacement
- $\Delta x = 3.0 \mu m \Rightarrow \Delta \theta = 0.0046^{\circ} \Rightarrow \Delta \nu = 50 GHz$
- Need at least 5GHz continuous scanning range

Laser Characterization

- Aiming for frequency noise on the order of 1MHz or less
- Laser stabilized with Thorlabs LDC240C Diode Current Controller, TED200C Temperature Controller
- Frequency characterization performed using Burleigh Wavemeter, Fabry-Perot etalon

– Lab spectrometer has 14GHz resolution

Temperature Stability

- Laser diode has strong frequency response to changes in temperature
- Temperature controlled using 2.5A thermoelectric cooler, 10kOhm thermistor, and Thorlabs TED200C temperature control box
- Stable to within ±1 ohm, corresponding to ±0.002 degrees C
- Preferred temperature for frequency stability remains undetermined

Frequency Stability

- Frequency hops in 8-12GHz range
- Close to expected size of mode hops due to mode spacing of laser cavity

Frequency Noise Close-Up

- Smaller hops occur roughly once per second
 Due to resolution of Wavemeter or DAQ device?
- 0.0001nm = 75MHz

Piezostack Functionality

 Change in frequency due to piezo voltage of 26V is 1.5GHz, an order of magnitude smaller than expected

Fabry-Perot Etalon

100%

- Optical cavity between two high precision mirrors
- Transmission T_e • Transmission peaks occur when laser frequency scans through resonant mode of cavity

• For our etalon, transmission peak FWHM is 27MHz and FSR is 1.5GHz

0%

Reflection R_e

 $\Delta\lambda$ -

Wavelength λ

δ2

Conclusions and Future Work

- I have constructed an ECDL with frequency noise on the order of 100MHz
- Further work should be done to determine optimal temperature and current for frequency stability
- Laser should be characterized using Fabry-Perot etalon
- Additional insight into sources of frequency noise could be achieved by transformation into the frequency domain
- Tunability of ECDL not as good as expected; need to make measurements with a higher voltage source

Acknowledgements

- Kai-Mei Fu, Kevin Jamison, and the rest of Fu lab—Mike, Nicole, Todd, Ed, Sarah, Xiayu, Matt
- Subhadeep Gupta, Alejandro Garcia, Shih-Chieh Hsu, Gray Rybka, Linda Vilett, Janine Nemerever
- Ron Musgrave
- Stephen Dilorio
- NSF

References

- T.P. Mayer Alegre, C. Santori, G. Medeiros-Ribeiro, R.G. & Beausoleil, "Polarization-selective excitation of nitrogen vacancy centers in diamond" *Phys. Rev. B 76*, 165205 (2007) (HP Labs)
- H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M.S. Blok, L. Robledo, T.H. Taminiau, M. Markham, D.J. Twitchen, L. Childress, and R. Hanson, "Heralded entanglement between solid-state qubits separated by 3 meters" *Nature 479*, 86-90 (2013)
- C Santori, P E Barclay, K-M C Fu, R G Beausoleil, S Spillane, and M Fisch,
 "Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond" Nanotechnology 21, 274008 (2010)
- CJ Hawthorn, KP Weber, RE Scholten, "Littrow configuration tunable external cavity diode with fixed direction output beam" *Rev. Sci. Instrum.* 72, 4477-4479 (2001)
- A.S.Arnold, J.S.Wilson and M.G.Boshier:"A simple extended-cavity diode laser", 69 Rev.Sci.Instrum 1236 (1998)

Questions?