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Abstract

This paper describes a previously published method to compute properties on neutron matter using
variational Monte Carlo simulations, and presents initial work done to use similar methods on large
nuclei. Necessary changes to account for protons in these calculations are outlined. In addition, steps
taken to optimize the run-time of these calculations are described.

I. Introduction

Properties of large nuclei, such as the ground
state wave function, energy, and density dis-
tribution, are poorly characterized due to the
expanse of the required computational calcu-
lations. While light nuclei have been stud-
ied extensively, calculations on heavier species
are rare. Characterizing large nuclei is impor-
tant to our understanding of nuclear, atomic,
and even molecular processes. Thus, a better
method must be found to make such calcula-
tions.

Wlazłowki et al. [1] recently published a
method of performing variational Monte Carlo
calculations on neutron matter comprised of
up to 340 neutrons on a 103 discretized lattice.
This work represents a significant step in the
treatment of large systems, and acts as a start-
ing point to study more complex systems such
as nuclei. This paper will describe the compu-
tational process used by Wlazłowki et al. to
perform calculations on neutron matter, as well
as characterize changes that are being made in
order to use a similar method to study large
nuclei.

II. Quantum Monte Carlo

This section provides a brief overview of Quan-
tum Monte Carlo in general and the specific
calculations used by Wlazłowki et al. This
method was taken as a starting point to per-
form calculations on nuclei.

The basic principle of Quantum Monte
Carlo is to use imaginary time evolution to
project out the ground state wavefunction of a
many-body system,

lim
τ→∞

e−τĤψ0 → ψ (1)

where ψ0 is an arbitrary initial trial state that
overlaps the ground state of the system.

In order to actually perform computa-
tional calculations, the Trotter Decomposition
method is used to rewrite this expression in
terms of small iterative imaginary time steps,
∆τ.

lim
∆τ→0,N→∞

e−N∆τĤψ0 → ψ (2)

The following approximation can then be made
to break the Hamiltonian into its kinetic and
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potential components.

e−∆τĤ ≈ e
−∆τT̂

2 e−∆τV̂e
−∆τT̂

2 (3)

Thus, the imaginary time evolution of the ket
can be written as

e−τĤ |ψ0〉 =
(

e
−∆τT̂

2 e−∆τV̂e
−∆τT̂

2

)N
|ψ0〉 (4)

Note that the bra is evolved in a identical man-
ner independently.

Since T̂ is a one-body operator and ψ0 can
be expressed as a Slater Determinant, calcula-
tion of e−∆τT̂ψ0 simply returns another Slater
Determinant. However, calculation of e−∆τV̂ψ0
returns a sum of Slater Determinants, causing
the evolution problem at hand to increase ex-
ponentially.

The Hubbard-Stratonovich Transformation,
expressed here in its continuous form,

e−(
∆τ
2 )λÂ2

=
1√
2π

∫ +∞

−∞
dxe

−x2
2 ex

√
−∆τλÂ (5)

can be used to express e−∆τV̂ in terms of solely
one-body operators, preventing this exponen-
tial scaling.

Applying this transformation to the iter-
ative evolution process results in a multi-
dimensional integral that can be expressed in
the form

N

∏
n

∫
dxn,i ρ(x)Ô(x) (6)

where ρ(x) is defined as some probability den-
sity and Ô(x) is a one-body evolution operator.

In order to accurately converge upon the
ground state wave function, the number of
imaginary time steps, N, must be sufficiently
large. Thus, calculation must be done over a
nearly infinite dimensional space. Accounting
for every contribution to this integral is a time-
consuming and impractical effort. Thus, Monte
Carlo methods are used, where contributions
are randomly sampled across the parameter
space. This method allows for considerably
faster and more accurate convergence.

III. Fermion Sign Problem

Few calculations of this size have been at-
tempted previously because Quantum Monte
Carlo simulations have limited applicability
in fermionic systems. In order to successfully
use Monte Carlo techniques, the integrand
of the multi-dimensional integral in question
must be positive definite. While this is the
case for bosonic systems, due to antisymmetry,
fermionic integrals oscillate, taking on both
positive and negative values. This leads to
cancellations and a loss of significance in cal-
culations. This occurrence is known as the
fermion sign problem.

In order to avoid this sign problem,
Wlazłowki et al. define an effective Hamil-
tonian

Ĥev = T̂ + V̂ev (7)

in which Vev is spin-independent and attractive
in momentum space. Defining the potential in
such a manner keeps the integrand positive
definite, thus eliminating the sign problem.

The approximate ground state wave func-
tion can be found by evolving the bra and ket
wavefunctions with the evolution Hamiltonian
as described in the above section. The remain-
ing components of the full potential,

δV̂ = V̂ − V̂ev (8)

can then be treated pertubatively, such that to
leading order,

E . 〈ψ| Ĥev |ψ〉+ 〈ψ| δV̂ |ψ〉 . (9)

IV. Addition of Protons

This section describes work in progress to use
the methods described above to move from cal-
culations on neutron matter to calculations on
nuclei. Adding protons to the systems requires
that several changes must be made, namely,
the trial wave function used, definition of the
evolution potential, and treatment of the per-
turbative corrections to the potential.
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I. Trial Wave Function

In the previous calculations done by Wlazłowki
et al. on neutron matter, plane waves were used
as trial wave functions. Neutron matter is in a
gaseous state, meaning that the neutrons can
be treated as approximately free particles, and
plane waves are adequate as a first approxima-
tion to the wave function.

This is no longer the case for nuclei,
where interactions between particles are mush
stronger. Trial wave functions for calculations
on nuclei are instead based on the eigenfunc-
tions of the three-dimensional harmonic oscil-
lator,

Ψn = NHnx (x)Hny(y)Hnz(z)e
−r2/2r2

0 (10)

where

r2
0 =

h̄
mω

(11)

In order to define an appropriate trial wave
function, r2

0 must be calculated based on the
total quantum number n of the system, and the
product of the three Hermite polynomials of
order nx, ny, and nz, must also be found.

II. Evolution Potential

In addition to the trial wave function, the evo-
lution potential must also be updated from
calculations on neutron matter to calculations
on nuclei. This follows because while neutron
matter has uniform density, nuclei do not. Po-
tential interactions between nucleons are not
only dependent on the distance between nucle-
ons, expressed as k in momentum space, but
also where in the nuclei those nucleons are
located, defined by r. Viewing the nuclei as
spherically symmetric, there is a direct corre-
lation between r, and the density, n. Thus, we
require a definition of the evolution potential
that is dependent on both k and n.

For both neutron matter and nuclei, the evo-
lution potential can be described as the sum of
three Yukawa interactions and a constant,

Vev = ∑
i=π,σ,ω

Vi M2
i

k2 + M2
i
+ V0 (12)

where each term represents interactions by
pion exchange, sigma boson exchange, and
omega boson exchange, respectively. In each
case, V describes the strength of the interaction,
while M refers to the mass of the particle in
the exchange. Vπ and Mπ are known from pre-
vious experiments, while the four remaining
parameters are fit at each density to minimize
phase shifts.

To perform calculations on neutron matter,
evolution potentials were constructed at vari-
ous constant densities (See Figure 1).
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Figure 1: Evolution potential vs. momentum at various
constant densities. Figure from Wlazłowki et
al. [1]

For calculations on nuclei, these potentials
are needed as a function of density as well as
momentum. Interpolation between the con-
stant density curves was considered, but ul-
timately proved to compromise the speed of
calculations. Instead, the σ and ω parameters
were recalculated using the results at the pre-
vious density as a starting point in an effort to
create smooth curves. These points were then
fitted to third and fourth-degree polynomials.

Redefining these parameters as continuous
functions allows for the rapid calculation of the
evolution potential at any value of n and k, as
depicted in Figure 4. The validity of these new
evolution potentials was assessed by recalcu-
lating approximate ground state energies for
neutron matter at four densities. These values
are compared to the previous results reported
by Wlazłowki et al. in Table 1. At low densi-
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ties, the approximate energies calculated from
the new potentials match those of calculated
from the old potential curves to within error.
At higher densities, the new potentials report
slightly higher energies, a discrepancy which
can be further studied and possibly corrected.
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Figure 2: Polynomial fits for mass parameters as a func-
tion of density. Blue = Mσ, purple = Mω
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Figure 3: Polynomial fits for strength parameters as a
function of density. Blue = Vσ, purple = Vω
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Figure 4: Evolution potential surface for varying n (in
f m−3) and k (in f m−1). Potentials are given
in GeV2.

Density Previous V New V

0.00655 2.154 ± 0.025 2.151 ± 0.332
0.0113 3.048 ± 0.016 2.939 ± 0.279
0.0554 8.250 ± 0.012 8.560 ± 0.130
0.1019 12.862 ± 0.007 13.518 ± 0.019

Table 1: Comparison of 〈ψ| Ĥev |ψ〉 calculated from
old and new evolution potentials. Densities
are given in f m−3, potentials are given in
MeV/N.

III. Isospin Dependence

After computing the expectation value of the
evolution Hamiltonian, corrections are made
to the ground state energy via perturbation
theory. Many of these components of the full
potential have isospin dependence. Some of
the potential terms, such as the one describing
one-pion exchange [2],

V1π =
g2

A
4 f 2

π

~τ1 ·~τ2
~σ1 ·~q~σ2 ·~q

q2 + m2
π

(13)

have explicit dependence on ~τ, the isospin ma-
trix.

Other components of the potential are not
applicable in neutron matter due to the Pauli
Principle. For example, the three-body contact
force shown in Figure 5 does not contribute in
neutron matter as it is impossible to have three
distinguishable particles interacting. However,
there is a contribution to the potential from
this term when protons are introduced into the
system. Cases like these must be accounted for
in order to accurately describe the potential of
the system.

Figure 5: Feynman diagrams depicting three-body force
contributions to the interaction potential at
next-to-next-to-leading-order (NNLO). From
left to right: two-pion exchange, one-pion ex-
change, and contact interactions. Figure from
Machleidt and Entem. [2]
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V. CUDA and Parallel

Programming

Nuclei, with the addition of protons, are more
complex systems than neutron matter. In or-
der to deal with the growing complexity of
the problem, computational efforts are in the
process of being moved from a CPU platform
to a GPU platform, where more transistors are
devoted to data processing.

The parallel programming and computing
platform CUDA was used to help parallelize
the code and make use of both host and de-
vice memory. In CUDA, kernels are set up as
parallel portions of code to be executed on the
device by an array of parallel threads which
constitute a block. This basic set-up is shown
in Figure 5.

Figure 6: Schematic of the CUDA grid system depicting
blocks and threads. Figure from cs.cmu.edu.

In order to optimize the nuclei calculations,
a separate stream is created for each wavefunc-
tion to be evolved. This allows the kernel evo-
lution operators to be run in parallel, evolving
each wavefunction at the same time, and reduc-
ing computational run-time.
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