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Introduction

Summer Goal:

Contribute to the development of code that will perform
Monte Carlo simulations on large nuclei (40− 200+ nucleons)
to obtain observables such as ground state energy and density
distribution.

Team previously developed code to do calculations on neutron
matter (paper published in May)

Next steps:

Alter code to deal with protons as well as neutrons

Move from a CPU to GPU platform to speed up calculations
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Quantum Monte Carlo

Idea: Use imaginary time evolution to project out the ground state
wavefunction of a many-body system.

lim
τ→∞

e−τĤψ0 = ψ

where ψ0 is an arbitrary initial state (overlaps ground state).

Trotter Decomposition:

lim
∆τ→0,
N→∞

e−N∆τĤψ0 = ψ

Break into components:

e−∆τĤ ≈ e
−∆τT̂

2 e−∆τV̂ e
−∆τT̂

2



Quantum Monte Carlo

Idea: Use imaginary time evolution to project out the ground state
wavefunction of a many-body system.

lim
τ→∞
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e−N∆τĤψ0 = ψ

Break into components:

e−∆τĤ ≈ e
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Quantum Monte Carlo

Ket evolution:

e−τĤ |ψ0〉 = ...
(

e
−∆τT̂

2 e−∆τV̂ e
−∆τT̂

2

)(
e
−∆τT̂
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2

)
|ψ0〉

e−τĤ |ψ0〉 = ... e−∆τT̂ e−∆τV̂ e−∆τT̂ e−∆τV̂ e
−∆τT̂

2 |ψ0〉

If φ is a Slater Determinant and Â is a one-body operator, then

e−τÂφ is also a Slater Determinant.

But V̂ is a two-body operator...
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e−τĤ |ψ0〉 = ... e−∆τT̂ e−∆τV̂ e−∆τT̂ e−∆τV̂ e
−∆τT̂

2 |ψ0〉

If φ is a Slater Determinant and Â is a one-body operator, then
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V̂

Potential Interaction:

V̂ =
∑
i<j

V (rij)

After second quantization:

V̂ =
∑
i,j,k,l

Vijkl a
†
ia
†
jalak =

∑
i,j,k,l

Vijkl

(
a†iak

)(
a†jal

)

V̂ =
∑
i

n̂↑(i)n̂↓(i)



Hubbard-Stratonovich Transformation

e−∆τV̂ |φ〉 = e−∆τ
∑
i n̂↑(i)n̂↓(i) |φ〉 is hard.

Hubbard-Stratonovich Transformation:

e−(∆τ
2 )λÂ2

=
1√
2π

∫ +∞

−∞
dxe

−x2

2 ex
√
−∆τλÂ

e−τĤ |ψ0〉 = ... e−∆τT̂ e−∆τV̂ e−∆τT̂ e−∆τV̂ e
−∆τT̂

2 |ψ0〉

Obtain multi-dimensional product:

N∏
n

∏
i

dxndxiρ(x)Ô(x)

Monte Carlo method: randomly sample across parameter space
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=
1√
2π

∫ +∞

−∞
dxe

−x2

2 ex
√
−∆τλÂ
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Fermion Sign Problem

To use Monte Carlo techniques, integrand must be positive
definite.

Due to antisymmetry (Pauli Principle), fermionic integrals oscillate
- leads to cancellations and loss of significance

Ex: 0.1234567891− 0.1234567890 = 0.0000000001

Solution: define an effective Hamiltonian, Ĥev = V̂ev + T̂ , that
does not have a sign problem.

V̂ev is spin-independent and attractive in momentum space

Treat δV̂ = V̂ − V̂ev pertubatively.

In the previous slides, Ĥ = Ĥev and V̂ = V̂ev.
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Adding Protons

What changes must be made to account for protons?

Create new trial wave functions

Update evolution potentials

Account for isospin dependence in perturbative corrections
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Trial Wave Functions

Neutron matter code used plane waves as trial wave functions.

Addition of protons requires trial wave functions based on the
harmonic oscillator.

Ψn(x, y, z) = NHnx(x)Hny(y)Hnz(z)e
−r2/2r20 ; r2

0 =
~
mω
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Updating the Potential

Neutron matter has uniform density, nuclei do not.

Need Vev(k, r) rather than Vev(k).

Evolution potential = sum of three Yukawa interactions (in the

form V = −g2 e−mr

r :

Vev =
VπM

2
π

k2 +M2
π

+
VσM

2
σ

k2 +M2
σ

+
VωM

2
ω

k2 +M2
ω

π = parameters for pion exchange
σ = parameters for sigma boson exchange
ω = parameters for omega boson exchange

Parameters are fit to minimize phase shifts.
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Potentials at Fixed Densities
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New Potential Parameters

Vev =
VπM

2
π

k2 +M2
π

+
VσM

2
σ

k2 +M2
σ

+
VωM

2
ω

k2 +M2
ω

Recalculate parameters and fit to polynomial functions, allowing
for fast calculation of Vev at any given k and r.
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Adding Protons

What changes must be made to account for protons?

Create new trial wave functions

Update evolution potentials

Account for isospin dependence in perturbative
corrections



Isospin Dependent Interactions

Some interaction components from chiral effective field theory
have isospin dependence.

Ex: one-pion exchange component

V1π =
g2
A

4f2
π

~τ1 · ~τ2
~σ1 · ~q ~σ2 · ~q
q2 +m2

π

Other interactions are not present in neutron matter.

Ex. three-body contact term
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