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• Spin basics 
• General properties of NV centers 
• Toward measurement-based quantum information with the 

NV center 



Spin ½ particle: A two-level quantum system 
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Application : Quantum information processing 
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Why quantum information? 

• Classical information bit: 0 and 1 
• Quantum information qubit: 

 
• Quantum ‘parallelism’: 
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The search for a good qubit 

• Applications: 
• Quantum algorithms 

• Factoring products of large prime numbers in polynomial time (Shor’s 
algorithm) 

• Simulating large quantum systems 
• Secure communication (quantum cryptography) 
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Why quantum information 



Qubit systems: 
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N IST,  Boulder (from physicsworld.com) 

Ions and atoms 

Superconducting qubits 

Delft (from Nature) 

Photons 

Innsbruck (from Physical Review Lett.) 

Diamond defects 

HP Labs 

Semiconductor qubits 

Stanford,  (from Physical Review Lett.) 

http://www.tongue-twister.net/mr/physics/entangled.htm
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The nitrogen vacancy color center in diamond 

Wikipedia, natural diamond 

Element 6,  C VD and HPHT diamond 

5  nm detonation diamond nanoparticles 

 Bradac et a l. ,  Nature Nanotechnology (2 010 ) 

http://upload.wikimedia.org/wikipedia/commons/6/6f/Brillanten.jpg


NV-diamond: an optically accessible,   
coherent solid state quantum system 
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ms=0  

ms=1,-1  

637nm 
ZPL 

2.88  G Hz 
1.8  ms coherence time1 

qubit for Q IP 

nanoscale sensor 

Balasubramanian et al. “Nature Materials”  8,  383  (2 0 09) (Stuttgart) 

O ptically coupled excited states 

optical spin readout for Q IP 

electron entanglement through 
photon interference  

Room temperature optically 
detected magnetic resonance 

1A 

1E 



Outline 
• Unique properties of NV centers 
• Toward measurement-based quantum information with 

the NV center 
• Optical detection of single 17 nm super-paramagnetic 

nanoparticles using a wide-field NV sensor array 
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Quantum information with NV centers 

Stuttgart group1 

Delft group2 

1W aldherr et a l.  N ature 50 6,  2 04  (2 014 ) 2Bernian et a l.  N ature 497,  86  (2 013 )   

Entang lem ent genera ted  once ever y  10  m inutes 

Q uantum error correction demonstrated 



Distributed entanglement 

*  Duan,  Lukin,  C irac,  Zoller Nature  414,  413 ,  (2 0 01), * * Raussendorf and Briegel,  PRL 86,  5188  (2 0 01) 

G raph creation:  

• Initia lize qubit 

 

• Perform a controlled phase 
gate to create edge 

• 2-qubit state is 

Image from Benjamin,  Lovett,  and Smith “Prospects for 
measurement-based quantum computing with solid state 
spins”,  Laser and Photonics Reviews 3 ,  556,  (2 0 09) 

  

• Q uantum repeater and long distance quantum communication*  

• C luster-state quantum computer*  
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Creating entanglement through measurement 

ªf =
1p
2
(j01i § j10i)

Cabrillo, C irac,  G arcia -Fernandez,  Zoller,  PRA 59,  1025  (1999),  Bose,  Knight,  Plenio,  Vedral PRL 83 ,  5158  (1999) 
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Photoluminescence from N Vs in a  high-nitrogen sample 

Entanglement success rate is so low due to  
NV optical properties. 

ω

ZPLhν ω− 
exhν ZPLhν

C .  Santori,  P.  E.  Barclay,  K. -M.  C .  Fu,  S.  Spillane,  M.  Fisch,  R.  G .  
Beausoleil, "  N anotechnology 21  ,  2740 08  (2 010 ) 

http://iopscience.iop.org/0957-4484/21/27/274008


Phonon broadening and diffusion 

* Fu,  Santori,  Barclay,  Rogers,  Manson,  Beausoleil PRL 103 ,  256404  (2 0 09),                                                          



Real time control of optical transition frequency 

D 

Dynamic stabilization 

Acosta,  Santori,  Faraon,  Huang,  Fu,  Stacey,  Simpson,  G reentree,  Prawer,  Beausoleil,  PRL 108,  2 0 6401 (2 012 ) ),  see a lso 
static Stark work from Stuttgart,  UC SB,  Harvard,  Delft  



Control over NV orientation 

〈111〉 

T.P. Mayer Alegre,  C .  Santori,   G .  Medeiros-Ribeiro,  R.G .  & Beausoleil,  “ Polarization-selective excitation of nitrogen 
vacancy centers in diamond”  Phys. Rev. B 76 ,  1652 05  (2 0 07 ) (HP Labs) 



How are NVs incorporated during CVD growth? 

1. Substitutional N  is incorporated and vacancy diffuses to N .  → 4  orientations 

2 . N V forms as a  unit during grown.  → 2  orientations 

〈110〉 



Single color observed for 〈110 〉 sample 
〈111〉 〈110〉 

〈111〉 〈110〉 

Recent Stu t tga r t result : 94% in a  sing le 
or ienta tion w ith (111) g row th. (J. Michl et al. ,  
104,  102407  (2 014 ).  

A.M.  Edmonds,  U.F.S.  D'Haenens-Johansson,  R. J.  C ruddace,  M.E.  N ewton,  K. -M.C .  Fu,  C .  Santori,  R.G .  Beausoleil,  D.J.  
Twitchen,  M.L.  Markham,  " Production of nitrogen-vacancy color centers in syntheti c diamond,”  PRB 86,  03521  (2 012 ) 



Potential simultaneous control over NV 
placement and orientation 

T. Karin, S. Dunham, K.M.-C .  Fu,   



Control of optical properties are possible we will still 
need further improvements. 

• Brokered graph states*  
• Integration into optical chip 

 

* Benjamin, Browne, Fitzsimons, Morton, New J. of Physics 8,  141  (2 0 0 6 ) 



NV- ZPL 

N V- phonon sidebands 

N V0 ZPL 

λ,  nm 
In

te
ns

ity
, 

a.
u.

 

Photoluminescence from N Vs in a  high-nitrogen sample 

Goal:  Collect NV- zero phonon line (ZPL) 
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Mirror 2 Mirror 1  

Using a cavity to control NV emission into a useful 
spectral and spatial mode 

• Cavity is on resonance with NV 
• NV is at cavity maximum 
• NV polarization is aligned to cavity mode. 
• High quality factor 
• Small mode volume 

3 2
NVcav NV

cav 2 2
NVcav mode max

| |3
4 | |D

n EQ E
n n V E

F
E

λ µ
π µ

  ⋅
 
 

=
 

 



Main geometries for optically integrated NV diamond 

Bulk Hybrid 

Features 
Better N V characteristics 

Integration of EO  materia l 

C hallenges 
Difficult to fabricate 
Low field at N V site 

Poor N V characteristics 
 

N anoparticles 

Features 
“Easy”  cavity fabrication 

Q  > 10 6 in our disks 

C hallenges 
Poor N V optical characteristics 

N V-cavity a lignment 

 

Diamond only 

HP Labs1 

Features 
Better N V characteristics 

High field at N V site 

C hallenges 

Difficult to fabricate 

Poor N V characteristics 

HP Labs2 

1  µm 

HP Labs3 

1Santori et a l.  Nanotechnology, 21 ,  27 4 0 08 (20 1 0 ) 2Faraon et a l.  Nature Photonics 5 ,  3 0 1  (2 0 1 1) 3Fu et al. N ew J.  of Physics 1 3,  05 5 0 23 
(2 0 11 ),  Barclay et al., Physical Review X 1 ,  01 1 007(2011) 
N anoparticle-cavity work:  Harvard (M.  Lukin),  Humbolt (O .  Benson),   C altech (O .  Painter) 
Single-crystal diamond-cavity work:   U.  O regon (H.  W ang),  Harvard (M.  Loncar,  E.  Hu),  Stuttgart (J.  W rachtrup),  Technion (R.  Kalish,  J.Salzman) 

G aP 

Diamond 



GaP-diamond ring microcavities 



  Diamond on SiO2 microrings 



Observing cavity-NV interaction I: GaP 

Excite  
single N V 

C ollect from  
cavity surface 

Tune cavity through  

Xe gas condensation 



Observing cavity-NV interaction II: Diamond 



Measuring Purcell enhancement: A quantitative 
measurement of cavity-NV interaction 
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Photoluminescence from N Vs in a  high-nitrogen sample 

Ideal:  50% lifetime → F = 1,  N V case:  50% →  lifetime F = 33  



GaP lifetime modification 

6.3 1.0ZPLF = ±

11.6 0.3 ns 9.7 0.1 nsΓ = ± → Γ = ±

 P.E. Barclay, K.-M.C. Fu, Charles Santori, Andrei Faraon, and 
Raymond G. Beausoleil, Physical Review X 1,  0110 07  (2 011) 



Purcell factor in all-diamond cavity 

11ZPLF =
11.1 ns 8.3 nsΓ = → Γ =

A. Faraon,  P.  E.  Barclay,  C .  Santori,  K. -M.C .  Fu,  and R.  G .  Beausoleil,   Nature Photonics 5 ,  301  (2 011) 

Most recent HPL result:  F = 70 *  

* A.  Faraon et a l. ,  Phys.  Rev.  Lett.  109 ,  033604 (2 012 ) 



Current direction at UW:  Deterministic fabrication of 
integrated devices in the GaP:diamond platform 

5 μm 

G aP 

Diamond 

Poly-G aP Single crystal G aP 

In collaboration with Yuncheng  Song and Larry Lee at Yale 



• Substrate: 200 nm GaP\800 nm AlGaP\GaP 
bulk 

• Photoresist layer as mechanical support 

• Cl2/Ar ICP-RIE 

• Selective HF wet etch of 
AlGaP layer for GaP release 

Epitaxial lift-off and transfer of single-crystalline GaP 

• Transfer of released layer 
onto diamond 

• Photoresist removal 



Coupled GaP resonator-waveguide structures on 
mechanical-grade diamond 

200 nm 

1 μm GaP disk 

 

Q ~ 3800 

• Transmission measurements: 

N. Thomas, R.J. Barbour, Y. Song, M.L. Lee, K-M.C. Fu, Optics Express 22, 13555 (2014) 



Estimated photon collection efficiency in our structures 

10,000 6,000 

• Compare to 
  free-space coupling:     η ≈ 0.03% 
  solid immersion lenses:     η ≈ 0.3% 
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Creation of  near-surface NV- centers in diamond by ion 
implantation and annealing 

e- 
e- 

Ion implantation High-temperature  

anneal 

Low-temperature 
anneal1 

• Create vacancies 

• Provide N to lattice  

• Convert NV0 → NV- • Diffusion and trapping of 
vacancies by implanted N  

N+ implantation, 10kV 1 hour in forming gas @ 900C 12 hours in air @ 460C 

1K-M. C. Fu, C. Santori, P. E. Barclay, R. G. Beausoleil, Applied Physics Letters 96 , 121907 (2010) 

http://apl.aip.org/resource/1/applab/v96/i12/p121907_s1
http://apl.aip.org/resource/1/applab/v96/i12/p121907_s1


Room temperature off-chip coupling of NV emission 
coupled into GaP disk resonators 

39/11 

NV 

1 μm 

Excitation with red LED through grating 

Excitation with 532 nm laser on disk, 
Collect NV0 and N V- PSB emission from grating  

Diamond 
with near-
surface NV- 

GaP disk 



Outlook 
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