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Abstract

A recent article, Yefsah et al., Nature 499, 426 (2013) [1], reported an unusual exci-
tation in a harmonically trapped unitary Fermi gas. The experiment imprints a domain
wall in the trap resulting in oscillations that have periods an order of magnitude longer
than the trapping period. The authors interpretted the results as ‘heavy solitons,’ but
vortex rings provide a more natural explanation of the observed periods. This paper
reports the results of simulations of a vortex ring in a harmonic trap to mimic the ex-
periment, using the density functional theory, specifically the extended Thomas-Fermi
Gross-Pitaevskii model. Vortex rings in harmonic traps experience long oscillatory
periods, comparable to the oscillations found in the experiment. It was found that the
oscillatory period of the vortex ring increases with the aspect ratio of the trap, and
decreases for oscillations with smaller amplitudes of oscillation. Additionally, oscilla-
tions experienced anti-damping when the system was not allowed to cool completely,
matching well with the experiment’s observed anti-damped oscillations.

1 Introduction

The Bardeen-Cooper-Schriefer (BCS) to Bose Einstein Condensation (BEC) crossover
in ultracold Fermi gases provides a model system where theoretical techniques can
be tested against experiments. In dilute Fermi gases, the range of the potential is
much less than the interparticle spacing, k−1F . The interaction of the system can be
characterized by the dimensionless parameter (kF a)−1, where a is the scattering length.
In the BCS limit, the scattering length is negative and (kF a)−1 → −∞. The system is
weakly interacting and the atoms form long-range Cooper pairs. In the BEC limit, the
scattering length is positive and (kF a)−1 → +∞. The atoms pair up to form tightly
bound dimers, which behave like bosons. For the ground state of the ultracold Fermi
gas, there is a smooth crossover from the BCS limit to the BEC limit [2].

The BCS-BEC crossover can be realized experimentally by adjusting the scattering
length through an external magnetic field

a(B) ∼ C

B −Bres
(1)

1



where B is the externally applied magnetic field and Bres is the resonant magnetic field
of the system. The Unitary limit occurs at the Feshbach resonance and a → ∞. The
parameter (kF a)−1 → 0 and all length scales drop out of the problem and a theory
is obtained that is set only by the particle density. The unitary Fermi gas (UFG) ex-
hibits remarkable properties, emerging from scale invariance, and creates an excellent
opportunity to make quantitative comparisons between theory and experiment. Fur-
thermore, many-body methods can be tested so they can be applied to similar systems
such as dilute neutron matter in neutron stars [2].

2 Experimental Puzzle

A recent experiment conducted at the MIT-Harvard Center for Ultracold Atoms re-
ported the observation of an unexpected excitation in a harmonically trapped UFG [1].
The experiment took ∼ 105 6Li atoms in an elongated harmonic trap and imprinted
a laser beam on half of the trap, twisting the phase of half of the wave function. The
experiment reported long oscillations of slowly moving ‘solitons,’ having periods an
order of magnitude longer than what was expected from previous theories.

The observed oscillations cannot be resolved in situ, and instead a procedure was
used to image the oscillations. The procedure included eliminating the harmonic trap,
allowing the gas cloud to expand, and taking an image of the expanded gas cloud. The
images show planar depletions which the authors interpreted as solitons.

However, vortex rings provide a more natural explantation for the long observed
oscillations. This paper reports the results of simulations involving vortex rings in
harmonic traps that mimic the experimental conditions [1].

3 Methods

3.1 The Gross-Pitaevskii Model

Dynamics simulations of the vortex rings are performed using Density Functional The-
ory (DFT). The Thomas-Fermi extension of the Gross-Pitaevskii equation well de-
scribes the unitary Fermi gas in the superfluid regime

i~∂tΨ =

(
−~2∇2

4mF
+ 2Vext + 2∂nE(n, a)

)
Ψ (2)

where n = 2|Ψ|2 is the fermion number density and E(n, a) is the energy-density as a
function of scattering length a, which can be manipulated with time and must be fit
to the equation of state. The QMC equation of state of a dilute Fermi gas has been
parametrized for positive scattering lengths [3].

E(n, a) =
3

5
εnξ

ξ + x

ξ + x(1 + ζ) + 3πξx2
− ~2

2ma2
n (3)

The somewhat odd factors of two arise because there are two fermions per dimer. This
is a bosonic model, thus only one wave function is needed as opposed to other density
functional theories such as the Time Dependent Superfluid Local Density Approxima-
tion (TDSLDA) which is much more computationally expensive [3].
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3.2 Time Evolution

The system is evolved using the split operator method.

Ψ(t+ δt) = (e−iKδt/2e−iV δte−iKδt/2) Ψ(t) +O(δ3t ) (4)

The error scales with O(δ3t ) resulting from splitting the kinetic term. The exponentials
must be computed to sufficiently high order to have this error scaling. Since a bosonic
model is being used, the kinetic term is constant and diagonal in momentum space while
the potential is diagonal in position space and the exponents can be evaluated exactly.
More careful evaluation is required if the potential depends on ψ, if the potential is
not constant through δt, and for Fermionic DFTs.

Applying the potential only affects the phase of the wave function, leaving the
density constant. Since the vortex is a spinning object, the phase of the wave func-
tion twists around it. The whirling of the phase through time does not contain
physical significance, and it can be advantageous to subtract the chemical potential,
〈ψ|H|ψ〉/〈ψ|ψ〉, from the effective potential.

To cool the system, the wave function is evolved with complex time. After cooling,
the system is evolved with real-valued time steps.

3.3 Imprinting and Tracking a Vortex

To imprint a vortex, a pinning potential is introduced to the wavefunction

Vring = Vpin exp

(
− (r −R)2 + (z − z0)2

2 (rpin)2

)
(5)

where Vpin determines the strength of the pinning potential and rpin determines the

thickness of the pinning potential. The pinning strength, Vpin, is a step function and

goes to zero by the time the system is done cooling.
To extract the period of the vortex as it oscillates about the trap, the trajectory of

the vortex is tracked. This is done through a least squares fit, fitting the wave function
to

ψ =
(z + ir)− (z0 + iR)

2ξ2 + |(z + ir)− (z0 + iR)|2
|ψ0| (6)

where ψ0 is the wave function of the gas cloud in the trap without a vortex and ξ is
the healing length of the vortex. The axial and radial position of the vortex are given
by z0 and R respectively. The fitting function is sensitive and requires an accurate
guess to return the location of the vortex. Initially, the guess is given by the position
of the pinned vortex and as the wavefunction is evolved, the guess is provided from a
third-order polynomial fit of the previous five vortex locations.

4 Results

The period of oscillation was found to depend on the aspect ratio of the trap as well
as the imprint location of the vortex. The simulations exploited the axial symmetry
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Figure 1: Image in the R-z-plane of a preliminary simulation of the harmonically trapped
superfluid provided as a reference for the reader. The top plot shows the density profile of
the system, and the bottom plot shows the corresponding phase. The vortex can be seen
as a density depletion, and the phase around the vortex twists from 0 to 2π.

Table 1: Imprinting the vortex at different radial positons
Imprint Location Period Amplitude

R0 = 0.20 R⊥ T = 8.6 Tz ∼ 0.45 Rz

R0 = 0.30 R⊥ T = 9.9 Tz ∼ 0.35 Rz

R0 = 0.40 R⊥ T = 10.7 Tz ∼ 0.15 Rz

R0 = 0.50 R⊥ T = 11 Tz ∼ 0.05 Rz

of the system, thus 2-dimensional simulations were ran and could be extended for 3-
dimensional results. The simulations were performed for a slice down the middle of the
harmonic trap, using the 2-dimensions for the axial and radial direction. A slice of a
vortex ring is a vortex-antivortex pair, and only one vortex is shown in the simulations
due to the radial coordinates used. Figure 1 illustrates how the simulations appeared.

The oscillation period depended on the amplitude of the oscillations. This depen-
dence was found by imprinting the vortex at different radial positions of the trap, and
the results can be seen in Table 1 and Figure 2. The oscillations with larger ampli-
tudes corresponded to longer periods of oscillation. At the critical radius, the vortex
is stationery which was found to happen for ∼ R0 = 0.49R⊥. The parameter R⊥ is
the TF radius of the gas cloud, and Rz is its axial length. Vortices imprinted at radii
greater than the critical radius experienced the same trajectory as imprinted the same
distance below the critical radius.

The period of the oscillation also depends on the aspect ratio, λ, of the trap. The
aspect ratio is the ratio of the axial trapping period to the radial trapping period,
λ = Tz/T⊥. Simulations were ran at the same three aspect ratios as reported in the
experiment, λ = 3.3, 6.2, 15.0. Table 2 shows the oscillations of a vortex imprinted at
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Table 2: Observed oscillations and particle numbers for the three aspect ratios
Aspect Ratio Period Particle number

λ = 3.3 (Tz = 47.6ms) T = 9.9 Tz N = 461 512
λ = 6.2 (Tz = 89.4ms) T = 8.4 Tz N = 460 796
λ = 15.0 (Tz = 216.4ms) T = 6.7 Tz N = 461 530

R0 = 0.30R⊥ for the three aspect ratios. The period of oscillation are shown in units
of the trapping period, and the periods increased as the aspect ratio decreased.

Simulations were also ran where the system was insufficiently cooled, causing the
oscillation to become anti-damped. Anti-damped oscillations were seen in the exper-
iment when conducted at higher temperatures. In the experiment, the period was
found to remain roughly constant within the experimental uncertainty. Here, it is
found that anti-damped systems have periods that decrease as the amplitude of os-
cillation increases. Figure 3 shows oscillations for a trap of λ = 6.2 for a completely
cooled system and an insufficiently cooled system.

5 Conclusion

The period of oscillation of a vortex ring in a harmonic trap was found to depend on
the initial imprint location of the vortex as well as the aspect ratio of the trap. Shorter
aspect ratios corresponded to longer periods of oscillation with respect to the trapping
period. The oscillatory period was also found to depend on the amplitude of oscillation,
which was shown by imprinting the vortex at different locations. Larger amplitudes of
oscillation corresponded to shorter periods. Finally, when the system was insufficiently
cooled the amplitude of oscillation increased and the period decreased. This final result
matched well with the anti-damping observed in [1].

This material is based on work supported in part by NSF Physics REU. Any opin-
ions, findings, conclusions, or recommendations expressed in this material are those of
the author and do not necessarily reflect those of NSF.
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Vortex trajectory for R=0.40R and λ=3.3
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Figure 2: The left column displays the different trajectories of a vortex ring in the R-
z plane, while the right column shows the time dependence of the axial position of the
vortex ring. The fourth row show an example of an almost stationary vortex ring. The
radius of a stationary vortex ring is ≈ 0.49R⊥, where R⊥ is the TF radius of the cloud
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Figure 3: The left column displays the different trajectories of a vortex ring in the R-
z plane, while the right column shows the time dependence of the axial position of the
vortex ring. Both simulations were ran with an aspect ratio λ = 6.2. The vortex in the
top plot was allowed to cool completely, and the vortex in the bottom plot was not. It
can be seen that the system will experience anti-damped oscillations when the system is
insufficiently cooled.
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