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Outline
• From QCD to Cold Atoms: Universality in Physics

BEC-BCS crossover, Unitary Fermi Gas,
Benchmarks: Convergence of Theory and Experiment
Novel Polarized Phases: p-wave superfluids,  LOFF supersolid crystals

• The Many Body Problem
Classical and Quantum: Bosons and Fermions
Quantum Monte Carlo (QMC), Mean Field Theory,
Density Functional Theory (DFT)

• From Cold Atoms to Nuclei and Neutron Stars
DFT, Vortex pinning, Glitches

• From Cold Atoms to Cold Dark Matter
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Universality

• One theory describes different systems
• Cold Atoms

Tune interactions to model other systems

• Neutron Stars, Nuclei
Interactions accidentally like cold atoms

• Superconductors
• Quark Matter
• Dark Matter
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Universality
Fermionic Superfluids

Neutron MatterkF ~ fm-1ann = -19 fmrnn = 2 fm
Cold AtomskF ~ µm-1

Tuneable arnn ~ 0.1 nm
Many systems

• different species
• dipole interactions
• optical lattices
• quantum simulators

Unitary 
Fermi Gasa = ∞re = 0Nuclei

neutrons 
and protons

Other Superfluids
• Superconductors (charged + phonons)
• Quarks (gluon interactions, Dark Matter?)
• 3He (p-wave)
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Universality
• Short distance irrelevant:

• At long distance (r>R) potentials equivalent V1≡V2
• Characterized by scattering length a
V1 V2

0 0
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“Renormalization”
• Describe physics by low energy “effective” theory
• Replace complicated high-energy (short distance) with 
a few low energy parameters (a and R with cutoff)

V1 V2

0 0
raR raR
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Unitary Fermi Gas
• S-wave scattering length
• BEC – Unitary – BCS crossover

(use whatever interaction is convenient)

V

a

a>0 (BEC)

r
0

V a=∞ Unitarity
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Unitary Fermi Gas

• Dilute limit: interaction given by scattering length a
• Unitary limit a=∞: No interaction length scale!

• Universal physics: Only scale is particle separation
• ℰ(ρ) = ξℰFG(ρ) ∝ ρ5/3,  ξ=0.376(5)

• Lithium 6 and dilute neutron matter in neutron stars
• ann = -19 fm

⇤H =

� �
⇤a†⇤aEa + ⇤b

†⇤bEb

⇥
�

�
V⇤a†⇤b

†⇤b⇤a

Ea,b =
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2m
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Unitary Fermi Gas
• S-wave scattering length
• BEC – Unitary – BCS crossover
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BEC Limit: Bosons
• Strong attraction: bosonic “dimers”

• Tightly bound pairs of fermions act like bosons 
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Schrödinger Eq.

• Wavefunction for a single particle

• Bose-Einstein Condensate (BEC)
• Condensate wavefunction
• All particles in same state
• Density ρ=|Ψ|2

�h�t� =

�
�

�h2�2

2mB
+ V + VMF(|�|2)

�
�

BEC
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Gross Pitaevskii Eq. (gpe)

• Interactions via “mean field” VMF
average (mean) of all particles

• Non-linear Schrödinger Equation

• Still evolve a single wavefunction

�h�t� =

�
�

�h2�2

2mB
+ V + VMF(|�|2)

�
�

BEC
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BCS Limit: Fermions
• Weak attraction: fermions almost free

• Pauli exclusion principle dominates
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Fermions are harder

• Pauli Exclusion (blocking)
• Particles in different states

• Must track N wavefunctions
• Non-linear Schrödinger equation
for each wavefunction

Hartree-Fock–Bogoliubov (HFB), Bogoliubov de-Gennes (BdG)

• Must use symmetries or supercomputers

ı⇤t⇥n = H[⇥]⇥n =

�
���2

2m � µ+U �†

� ��2

2m + µ�U

⇥�
un

vn
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N 3Nx Nt

Fermi Surface

a b
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Unitary Fermi Gas
• Between: Properties of both BEC and BCS
• Strongly interacting: Non-perturbative
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Unitary Fermi Gas 

• Unitary limit a=∞: No interaction length scale!

• Universal physics:
• ℰ(ρ) = ξℰFG(ρ) ∝ ρ5/3,  ξ=0.376(5)

• Simplest non-trivial model (dimensional analysis)

• Non perturbative (no small parameters)

• Rich phase structure
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Unitary Fermi Gas 

• Unitary limit a=∞: No interaction length scale!

• Universal physics:
• ℰ(ρ) = ξℰFG(ρ) ∝ ρ5/3,  ξ=0.376(5)

• Simple, but hard to calculate!
Bertsch Many Body X-challenge
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Ku, Sommer, Cheuk, and Zwierlein 2012

Unitary 
Equation of 

State
•Only scales: T and N

•One convex dimensionless 
function hT(µ/T)

•Measured to percent level:
• ξexp = 0.376(5)
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FIG. 4. A Density and B pressure of a unitary Fermi gas versus µ/kBT , normalized by the density and pressure of a non-
interacting Fermi gas at the same chemical potential µ and temperature T . Red solid circles: experimental EoS. Dashed lines:
low-temperature behavior with � = 0.364, 0.376 and 0.389. Black dashed line: low-temperature behavior from the � upper
bound � = 0.383 [35]. Green open circles and black dashed line at 1.0: MIT experimental density and pressure, and theory for
the ideal Fermi gas. Blue solid squares (blue band): Diagrammatic Monte Carlo [18] for density (pressure). Solid green line:
3rd order Virial expansion. Open black squares: self-consistent T-matrix [22]. Open green circles: [32]. Orange star: [30]. Blue
star: [31]. Solid diamonds: ENS experiment [12]. Open diamonds: Tokyo experiment [11].

imum of µ/EF = 0.42(1) at T/TF = 0.171(10), and then
decreases at lower temperatures. This is expected for a
superfluid of paired fermions [22]. As the temperature
is increased from zero in a superfluid, phonons (sound
excitations) emerge that increase the chemical potential
µ. In addition, fermion pairs start to break and single
fermions contribute increasingly to the chemical poten-
tial with increasing temperature. At Tc, µ/EF must have
a sharp change in slope, as d(µ/EF )/d(T/TF ) involves
the singular compressibility. Indeed, the self-consistent
T-Matrix calculation shows a very clear peak in µ/EF

near Tc [22], in agreement with our observation. At low
temperatures, the reduced chemical potential µ/EF sat-
urates to the universal value �. As the internal energy
E and the free energy F satisfy E(T ) > E(T = 0) =
3
5N�EF = F (T = 0) > F (T ) for all T , the reduced
quantities fE ⇥ 5

3
E

NEF
= p̃ and fF ⇥ 5

3
F

NEF
= 5

3
µ
EF

� 2
3 p̃

provide upper and lower bounds for � [36], shown in Fig.
3A. Taking the coldest points of these three curves and
including the systematic error due to the e�ective inter-
action range, we find � = 0.376(5). The uncertainty in
the Feshbach resonance is expected to shift � by at most
2% [13]. This value is consistent with a recent upper
bound � < 0.383 [35], is close to � = 0.36(1) from a
self-consistent T-matrix calculation [22], and agrees with
� = 0.367(9) from an epsilon expansion [37]. It lies be-
low earlier estimates � = 0.44(2) [38] and � = 0.42(1) [39]
via fixed-node quantum Monte-Carlo that provide upper

bounds on �. Our measurement agrees with several less
accurate experimental determinations [5], but disagrees
with the most recent experimental value 0.415(10) that
was used to calibrate the pressure in [12], shown in Fig.
4B.

From the energy, pressure and chemical potential, we
can obtain the entropy S = 1

T (E + PV � µN). Shown
in Figure 3B is the entropy per particle S/NkB =
TF
T (p̃ � µ

EF
) as a function of T/TF . At high tempera-

tures, S is close to the entropy of an ideal Fermi gas at
the same T/TF . Down to Tc, neither the non-interacting
nor the unitary Fermi gas has S/N ⇤ kB . Also, the
specific heat CV is not linear in T . Thus it is question-
able to identify the normal regime as a Landau Fermi
Liquid, although some thermodynamic quantities agree
surprisingly well with the expectation for a Fermi liquid
(see [12] and [13]). Below about T/TF = 0.17 the en-
tropy starts to strongly fall o� compared to that of a
non-interacting Fermi gas, which we again interpret as
the freezing out of single-particle excitations due to for-
mation of fermion pairs. Far below the critical tempera-
ture for superfluidity, phonons dominate. They only have
a minute contribution to the entropy [22], less than 0.02
kB at T/TF = 0.1, consistent with our measurements.
At the critical point we obtain Sc = 0.73(13)NkB , in
agreement with [22]. It is encouraging for cold atom ex-
periments that we obtain very low entropies, less than
0.04NkB , far below critical entropies required to reach

P =
⇤
ThT

�µ
T

⇥⌅5/2
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Unitary Fermi Gas 

• Unitary limit a=∞: No interaction length scale!

• Universal physics:
• ℰ(ρ) = ξℰFG(ρ) ∝ ρ5/3,  ξ=0.376(5)

• Simplest non-trivial model (dimensional analysis)

• Non perturbative (no small parameters)

• Rich phase structure
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 
2006)

BEC-BCS Crossover 
Phase Diagram (T=0)

Grand canonical

BCS-BEC Crossover

No solid evidence for 
what happens in the 
middle here

Need precision 
measurements 
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 
2006)

Symmetric
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Equal Fermi surfaces
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 
2006)

Symmetric
BCS State

Zero momentum pairs
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 
2006)
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 
2006)

Symmetric
BEC State

Tightly bound pairs
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 
2006)

Asymmetric?

Unequal Fermi surfaces
•Frustrates pairing
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 
2006)

Asymmetric
P-wave pairs

Kohn-Luttinger implies 
attractive at some l
Two coexisting 
superfluids
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order unity.) We therefore conclude that the P-wave su-
perfluid/BEC phase P1 may be observed in asymmetric
Fermi gases as one approaches the S-wave Feshbach reso-
nance from the BEC regime.

Our results are justified in weak coupling. The omitted
preexponential factors, however, depend on higher-order
induced interactions. It is expected that the resulting fac-
tors are of order unity. We also note that the pairing
interaction induced by single phonon exchange is related
to the effective mass m!=m " 1# F1=3 through the
Landau parameter F1 " $NFUP. Effective mass correc-
tions are thus higher order, but they would increase the
density of states at the Fermi surface, and thus increase the
magnitude of the P-wave gap and TP

c .
BCS regime.—Next, we show that all proposed asym-

metric Fermi-liquid phases are unstable towards a two-
component P-wave superfluid due to the exchange of
density fluctuations. This occurs in the BCS regime and
is denoted by P2 in our phase diagram Fig. 1. We start from
a two-component asymmetric Fermi gas with Fermi mo-
menta k"F > k#F, and calculate the induced interactions in
weak coupling. To lowest order in the S-wave interaction
4!a@2=m, the induced interaction for back-to-back scat-
tering is given by [15]:

U↑↑
ind(0, !p1 − !p2) = ↓ ↓

!p1,↑ −!p1,↑

!p2,↑ −!p2,↑

= −N↓
F

(
4πa!2

m

)2

L |!p1 − !p2| / (2!k↓
F)

)
. (14)

The induced interaction for the minority fermions is ob-
tained by interchanging the spin labels. As before, in weak
coupling we neglect the frequency dependence and con-
sider momenta on the Fermi surface. Thus, L%y& denotes
the static Lindhard function

 L%y& " 1

2
# 1$ y2

4y
ln
!!!!!!!!
1# y
1$ y

!!!!!!!!: (15)

The importance of induced interactions for superfluidity
has been pointed out for symmetric Fermi systems: in weak
coupling for S-wave pairing [16], for P-wave pairing with
repulsive interaction [17], and close to the Feshbach reso-
nance [18] based on [19]. In addition, it has been shown
that induced interactions significantly suppress the super-
fluid gaps in neutron stars [20,21]. For P-wave pairing in
neutron stars, it is known that central induced interactions
are attractive [22], but repulsive spin-orbit fluctuations
dominate this effect [21].

The resulting P-wave superfluid gap for the majority
component is given by !"

P ' ""F exp(1=%N"
FU

""
P&), where U""

p

denotes the P-wave projection of the induced interaction as
in Eq. (5) [23]. This leads to

 

!"
P

""F
' exp

"
$ !2

4k"Fk
#
Fa

2L1%k"F=k#F&

#
; (16)

with the P-wave superfluid gap for the minority component
given by interchanging the spin labels. The asymmetry
enters through the function
 

L1%z& "
5z2 $ 2

15z4
lnj1$ z2j$ z2 # 5

30z
ln
!!!!!!!!
1$ z
1# z

!!!!!!!!$
z2 # 2

15z2
;

which has the limiting behavior

 L1%z& !

8><
>:

z2=18 where z * 1;
"# %7$ 4 ln2&%z$ 1&=15 where z + 1;
2 ln%z&=%3z2& where z , 1:

For the symmetric case, we recover the result of [17], !P '
"F exp($!2=%4k2Fa2"&), with " " %2 ln2$ 1&=5; however,
the work of [17] considered repulsive S-wave interactions.
In our case, interspecies S-wave pairing will dominate for
the symmetric system. The phase P2 will start for some
small but finite asymmetry, and the deviations in the ex-
ponent will be linear in (z$ 1).

For large asymmetries k"F , k#F, the P-wave gap of the
majority component is

 

!"
P

""F
' exp

"
$ 3!2

2%2k#Fa&2 ln%k"F=k#F&
k"F
k#F

#
; (17)

while that of the minority component is

 

!#
P

"#F
' exp

"
$ 18!2

%2k#Fa&2
k"F
k#F

#
: (18)

The majority component has a larger gap, but both are
suppressed for large asymmetry.

For fixed k#F, the minority gap !#
P decreases monotoni-

cally for increasing asymmetry, while for fixed k"F, the
majority gap !"

P has a maximum at k#F + 0:77k"F, due to
the maximum of L1%z&=z " 0:11 for z " 1:3:

 

!";max
P

""F
' exp

"
$ !2

0:11%2k"Fa&2
#
: (19)

Finally, we note that the P2 phase does not destabilize
LOFF, or similar phases, whose condensation energy is
parametrically the same as that of the S-wave BCS phase
where !S ' exp%!=2kFa&. Thus, the P-wave energy gain
is parametrically smaller in weak coupling.

Discussion.—Several asymmetric phases proposed in
the literature contain Fermi surfaces, including the normal
Fermi-liquid phases as well as the gapless breached pair
phases. Kohn and Luttinger [24] pointed out that, at zero
temperature, all Fermi surfaces are unstable in the presence
of interactions. We have shown that, in weak coupling,
induced interactions lead to the formation of P-wave
superfluids with maximal gaps for intermediate asymme-
tries. Thus, the suggested normal Fermi-liquid phases and

PRL 97, 020402 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
14 JULY 2006

020402-3
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 
2006)

Asymmetric
P-wave BEC

BEC and P-wave 
superfluids coexist 
homogeneously
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 
2006)

Asymmetric
Gapless SF

“Breach” in pairing 

Still induced P-wave
May need large mass ratio 
or structured interactions 
(not likely at weak coupling 
in cold atoms)
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 
2006)

Asymmetric
FFLO

State (LO) is crystal 
(supersolid)

Pairs have momentum
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Bulgac and Forbes PRL 101 (2008) 215301

DFT predicts (FF)LO
at Unitarity: Supersolid!

Large density contrast 
(factor of 2)

Similar to contrast of 
vortex core

3

y = µb/µa

h
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∆/∆0
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FIG. 2: The dimensionless convex function h(y) [18]
that defines the average pressure density P(µa, µb) =
2

5

`

2m
!2

´3/2
[µah(y)]5/2/(6π2), where y = µb/µa. In addition

to the constraints discussed in [18] (with the updated value
ξ = 0.40 [15, 16]), we have included the constraint imposed
by the parametrization of the normal state energy defining
the aslda functional and shown in Fig. 1 (thin solid blue
line). The pressure of the lo states are shown by the thick
red curve. The y dependence of the amplitude of the pairing
field ∆ = max{|∆(z)|} and the period L are shown as in-
sets, with normalizations that are described in Fig. 3. In the
absence of any other phases, our calculations suggest a sec-
ond order transition at yLO−N , and a first order transition at
yLO−SF , with the amplitude ∆ rising smoothly from ∆ = 0
to just below ∆0 at yLO−SF . The period also rises from a
minimum value LLO−N at yLO−N , to a finite maximum value
LLO−SF at yLO−SF . Were the transition at yLO−SF smooth,
LLO−SF → ∞ would diverge. Sample profiles for the states
marked × are shown in Fig. 3. (Colour online.)

lack of scales at unitarity – between L and the average
energy and pressure densities: L ∂P/∂L = 2E−3P . This
ensures that the unitary relationship P = 2

3
E is satisfied

by the physical state.
At unitarity, one may fully characterize all stable

phases by the single parameter y = µb/µa as de-
scribed in [18]. We start by describing the homogeneous
and isotropic states supported in the aslda functional:
For y < y0 [18], the system is a fully-polarized non-
interacting Fermi gas (Na); between y0 < y < yLO the
highest pressure corresponds to a partially polarized two-
component Fermi gas; and above yLO < y < 1, the fully-
paired superfluid has the highest pressure. The point
yLO is where the pressures of the partially polarized nor-
mal and fully-paired superfluid states are equal. This is
where the energetic competition of the normal and su-
perfluid states is minimized, and thus where the lo state
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FIG. 3: A single period exhibiting the spatial dependence
of the pairing field ∆(z) (top) and the number densities
of the majority (dotted) and minority (solid) species (bot-
tom). Profiles are shown for the values of y = µb/µa ∈
(yLO−N , yLO−SF ) indicated by × on the curves in Fig. 2.
The pairing field is expressed in terms of the gap ∆0 of the
competing superfluid state of the same average chemical po-
tential µ+. The amplitude increases smoothly from zero at
yLO−N , where the profile is almost sinusoidal, to a critical
value slightly less than ∆0 at yLO−SF , where the profile as-
sumes a domain wall structure. The units of the densities
and periods are chosen by fixing the chemical potential differ-
ence µ− to facilitate comparison with trap experiments: In a
trap, µ− is globally fixed while the average chemical potential
µ+(r) = µ0 − V (r) varies with the trapping potential V (r).
The densities and length scales are normalized to the density
n0 and interparticle spacing l0 of a single species in the fully-
paired superfluid at yLO−SF . Thus, the changes in magnitude
demonstrate how the parameters decrease with y as one moves
towards the edge of the trap (see [13, 18] for details). Large
oscillations of the minority component break translation in-
variance, giving the lo state the crystalline properties of a
quantum solid. These induce large oscillation in the mean-
field potentials (not shown), and have a significant impact on
the normal correlation energy. For this reason, all the terms
in the energy density functional are critical for a proper de-
scription of the lo phase. The majority component exhibits
much smaller oscillations because the larger local kinetic en-
ergy density suppresses gradients. (Colour online.)

is most likely to occur. For y > 1, the picture is re-
versed with the species a ↔ b exchanged. Our aslda

parametrization does not admit any stable homogeneous
gapless superfluid (breached pair) states [10].

As shown in Fig. 2, we find competitive lo solutions
for a large range of the parameter y ∈ (yLO−N , yLO−SF )
with finite periods in the range LLO−N ≤ L ≤ LLO−SF .
At yLO−N , the transition appears to be second order, with
max{|∆(z)|} → 0 vanishing smoothly from the lo phase
to the normal phase, while at yLO−SF , the transition ap-
pears to be first order, with the order parameter abruptly
loosing its spatial oscillations at a finite period LLO−SF .
The remaining normal states between y0 < y < yLO−N

would be susceptible to the Kohn-Luttinger instability,
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Bulgac et al. (Science 2011)

Superfluid vortices
have holes

Large density contrast 
(factor of 2)

Similar to contrast of 
vortex core
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Bulgac and Forbes PRL 101 (2008) 215301

DFT predicts (FF)LO
at Unitarity: Supersolid!

Large density contrast 
(factor of 2)

Similar to contrast of 
vortex core
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FIG. 2: The dimensionless convex function h(y) [18]
that defines the average pressure density P(µa, µb) =
2

5

`

2m
!2

´3/2
[µah(y)]5/2/(6π2), where y = µb/µa. In addition

to the constraints discussed in [18] (with the updated value
ξ = 0.40 [15, 16]), we have included the constraint imposed
by the parametrization of the normal state energy defining
the aslda functional and shown in Fig. 1 (thin solid blue
line). The pressure of the lo states are shown by the thick
red curve. The y dependence of the amplitude of the pairing
field ∆ = max{|∆(z)|} and the period L are shown as in-
sets, with normalizations that are described in Fig. 3. In the
absence of any other phases, our calculations suggest a sec-
ond order transition at yLO−N , and a first order transition at
yLO−SF , with the amplitude ∆ rising smoothly from ∆ = 0
to just below ∆0 at yLO−SF . The period also rises from a
minimum value LLO−N at yLO−N , to a finite maximum value
LLO−SF at yLO−SF . Were the transition at yLO−SF smooth,
LLO−SF → ∞ would diverge. Sample profiles for the states
marked × are shown in Fig. 3. (Colour online.)

lack of scales at unitarity – between L and the average
energy and pressure densities: L ∂P/∂L = 2E−3P . This
ensures that the unitary relationship P = 2

3
E is satisfied

by the physical state.
At unitarity, one may fully characterize all stable

phases by the single parameter y = µb/µa as de-
scribed in [18]. We start by describing the homogeneous
and isotropic states supported in the aslda functional:
For y < y0 [18], the system is a fully-polarized non-
interacting Fermi gas (Na); between y0 < y < yLO the
highest pressure corresponds to a partially polarized two-
component Fermi gas; and above yLO < y < 1, the fully-
paired superfluid has the highest pressure. The point
yLO is where the pressures of the partially polarized nor-
mal and fully-paired superfluid states are equal. This is
where the energetic competition of the normal and su-
perfluid states is minimized, and thus where the lo state
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FIG. 3: A single period exhibiting the spatial dependence
of the pairing field ∆(z) (top) and the number densities
of the majority (dotted) and minority (solid) species (bot-
tom). Profiles are shown for the values of y = µb/µa ∈
(yLO−N , yLO−SF ) indicated by × on the curves in Fig. 2.
The pairing field is expressed in terms of the gap ∆0 of the
competing superfluid state of the same average chemical po-
tential µ+. The amplitude increases smoothly from zero at
yLO−N , where the profile is almost sinusoidal, to a critical
value slightly less than ∆0 at yLO−SF , where the profile as-
sumes a domain wall structure. The units of the densities
and periods are chosen by fixing the chemical potential differ-
ence µ− to facilitate comparison with trap experiments: In a
trap, µ− is globally fixed while the average chemical potential
µ+(r) = µ0 − V (r) varies with the trapping potential V (r).
The densities and length scales are normalized to the density
n0 and interparticle spacing l0 of a single species in the fully-
paired superfluid at yLO−SF . Thus, the changes in magnitude
demonstrate how the parameters decrease with y as one moves
towards the edge of the trap (see [13, 18] for details). Large
oscillations of the minority component break translation in-
variance, giving the lo state the crystalline properties of a
quantum solid. These induce large oscillation in the mean-
field potentials (not shown), and have a significant impact on
the normal correlation energy. For this reason, all the terms
in the energy density functional are critical for a proper de-
scription of the lo phase. The majority component exhibits
much smaller oscillations because the larger local kinetic en-
ergy density suppresses gradients. (Colour online.)

is most likely to occur. For y > 1, the picture is re-
versed with the species a ↔ b exchanged. Our aslda

parametrization does not admit any stable homogeneous
gapless superfluid (breached pair) states [10].

As shown in Fig. 2, we find competitive lo solutions
for a large range of the parameter y ∈ (yLO−N , yLO−SF )
with finite periods in the range LLO−N ≤ L ≤ LLO−SF .
At yLO−N , the transition appears to be second order, with
max{|∆(z)|} → 0 vanishing smoothly from the lo phase
to the normal phase, while at yLO−SF , the transition ap-
pears to be first order, with the order parameter abruptly
loosing its spatial oscillations at a finite period LLO−SF .
The remaining normal states between y0 < y < yLO−N

would be susceptible to the Kohn-Luttinger instability,
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MIT Experimental data from Shin et. al (2008)

Observations: Nothing?
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DFT predicts (FF)LO
at Unitarity: Supersolid!

Large density contrast 
(factor of 2)

Similar to contrast of 
vortex core
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FIG. 2: The dimensionless convex function h(y) [18]
that defines the average pressure density P(µa, µb) =
2

5

`

2m
!2

´3/2
[µah(y)]5/2/(6π2), where y = µb/µa. In addition

to the constraints discussed in [18] (with the updated value
ξ = 0.40 [15, 16]), we have included the constraint imposed
by the parametrization of the normal state energy defining
the aslda functional and shown in Fig. 1 (thin solid blue
line). The pressure of the lo states are shown by the thick
red curve. The y dependence of the amplitude of the pairing
field ∆ = max{|∆(z)|} and the period L are shown as in-
sets, with normalizations that are described in Fig. 3. In the
absence of any other phases, our calculations suggest a sec-
ond order transition at yLO−N , and a first order transition at
yLO−SF , with the amplitude ∆ rising smoothly from ∆ = 0
to just below ∆0 at yLO−SF . The period also rises from a
minimum value LLO−N at yLO−N , to a finite maximum value
LLO−SF at yLO−SF . Were the transition at yLO−SF smooth,
LLO−SF → ∞ would diverge. Sample profiles for the states
marked × are shown in Fig. 3. (Colour online.)

lack of scales at unitarity – between L and the average
energy and pressure densities: L ∂P/∂L = 2E−3P . This
ensures that the unitary relationship P = 2

3
E is satisfied

by the physical state.
At unitarity, one may fully characterize all stable

phases by the single parameter y = µb/µa as de-
scribed in [18]. We start by describing the homogeneous
and isotropic states supported in the aslda functional:
For y < y0 [18], the system is a fully-polarized non-
interacting Fermi gas (Na); between y0 < y < yLO the
highest pressure corresponds to a partially polarized two-
component Fermi gas; and above yLO < y < 1, the fully-
paired superfluid has the highest pressure. The point
yLO is where the pressures of the partially polarized nor-
mal and fully-paired superfluid states are equal. This is
where the energetic competition of the normal and su-
perfluid states is minimized, and thus where the lo state
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FIG. 3: A single period exhibiting the spatial dependence
of the pairing field ∆(z) (top) and the number densities
of the majority (dotted) and minority (solid) species (bot-
tom). Profiles are shown for the values of y = µb/µa ∈
(yLO−N , yLO−SF ) indicated by × on the curves in Fig. 2.
The pairing field is expressed in terms of the gap ∆0 of the
competing superfluid state of the same average chemical po-
tential µ+. The amplitude increases smoothly from zero at
yLO−N , where the profile is almost sinusoidal, to a critical
value slightly less than ∆0 at yLO−SF , where the profile as-
sumes a domain wall structure. The units of the densities
and periods are chosen by fixing the chemical potential differ-
ence µ− to facilitate comparison with trap experiments: In a
trap, µ− is globally fixed while the average chemical potential
µ+(r) = µ0 − V (r) varies with the trapping potential V (r).
The densities and length scales are normalized to the density
n0 and interparticle spacing l0 of a single species in the fully-
paired superfluid at yLO−SF . Thus, the changes in magnitude
demonstrate how the parameters decrease with y as one moves
towards the edge of the trap (see [13, 18] for details). Large
oscillations of the minority component break translation in-
variance, giving the lo state the crystalline properties of a
quantum solid. These induce large oscillation in the mean-
field potentials (not shown), and have a significant impact on
the normal correlation energy. For this reason, all the terms
in the energy density functional are critical for a proper de-
scription of the lo phase. The majority component exhibits
much smaller oscillations because the larger local kinetic en-
ergy density suppresses gradients. (Colour online.)

is most likely to occur. For y > 1, the picture is re-
versed with the species a ↔ b exchanged. Our aslda

parametrization does not admit any stable homogeneous
gapless superfluid (breached pair) states [10].

As shown in Fig. 2, we find competitive lo solutions
for a large range of the parameter y ∈ (yLO−N , yLO−SF )
with finite periods in the range LLO−N ≤ L ≤ LLO−SF .
At yLO−N , the transition appears to be second order, with
max{|∆(z)|} → 0 vanishing smoothly from the lo phase
to the normal phase, while at yLO−SF , the transition ap-
pears to be first order, with the order parameter abruptly
loosing its spatial oscillations at a finite period LLO−SF .
The remaining normal states between y0 < y < yLO−N

would be susceptible to the Kohn-Luttinger instability,
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MIT Experimental data from Shin et. al (2008)

Observations: Inconclusive
• Need detailed structure or novel signature
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Why FFLO not seen?
• It is not there:

• Other homogenous phases might be better.
• T might be too high (fluctuations kill 1D FFLO).
• Trap frustrates formation (traps are not flat enough).

• It is not seen:
• Noise washes out signature.
• Small physical volume for FFLO.

• Need a nice flat trap: Large physical volume of FFLO
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Cold Atoms

• Experimental Controls
• Species, population, interactions, optical lattices

• Universal physics: quantum simulators?
Can we simulate gauge theories? (Try to simulate lattice models)

• Benchmark Theory: Few to Many

• Unitary Fermi Gas models Neutron Matter

Monday, July 29, 13



Universality
Fermionic Superfluids

Neutron MatterkF ~ fm-1ann = -19 fmrnn = 2 fm
Cold AtomskF ~ µm-1

Tuneable arnn ~ 0.1 nm
Many systems

• different species
• dipole interactions
• optical lattices
• quantum simulators

Unitary 
Fermi Gasa = ∞re = 0Nuclei

neutrons 
and protons

Other Superfluids
• Superconductors (charged + phonons)
• Quarks (gluon interactions, Dark Matter?)
• 3He (p-wave)
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QCD Vacuum Animation: Derek B. Leinweber (http://www.physics.adelaide.edu.au/~dleinweb/VisualQCD/Nobel/index.html)
Neutron Star Structure: (Dany Page) Landscape: (modified from a slide of A. Richter)

The nuclear landscape

• Nuclear systems are complex many-
body systems with rich properties 

• No “one size fits all” method

• All theoretical approaches need to be 
linked

Nucleonic matter: 

Infinite system of interacting neutrons 
and protons in the thermodynamic limit.

Introduction Formalism Results scale Summary

Which theoretical method(s)?

! No “one size fits all” theory for nuclei

! All theoretical approaches need to be linked

Non-Empirical Pairing Functional for nuclei T. Duguet

Friday, March 12, 2010

QCD Vacuum

The 
Nuclear 
Landscape

•Lattice QCD,
 nucleons, interactions

•QMC, etc.
small to medium nuclei

•DFT, 
medium to large nuclei

•Neutron stars?
Molecular Dynamics
Hydrodynamics

Monday, July 29, 13
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Many Body Problem

• From microscopic...
quarks and gluons, electrons and photons, protons and neutrons, atoms

• ... to macroscopic
nuclei, superconductors/superfluids, neutron stars, (dark matter)

• One, two, (three, four)... many.

• Exact method fail quickly
• Approximate, or make models

Monday, July 29, 13



N Nx Nt

Classical

• Positions and velocities as functions of time:(x, y, z; px, py, pz)
• One-body and two-body

• Exact solutions

• Many two-body interactions

�F =
GmM

��r1 ��r2�2
, �F = � ��V(��r1 ��r2�)
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Three Body
• Few exact solutons

• Enter chaos

18 Nx Nt

Hut and J.N. Bahcall ApJ 268, 319-41 (1983)
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Tom Quinn
http://www-hpcc.astro.washington.edu/picture/movies.html

Many Body
• Still tractable numerically

• Naïvely N2
• Usually N log(N)

N 6Nx Nt

John Dubinski (2008)
http://www.galaxydynamics.org/spiral_metamorphosis.html
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Quantum Systems

• Wavefunction Ψ(x,t): 3Nx Nt
• Exponentially hard: (3Nx)N Nt
• Eg. Sn (Tin) A~120: (3Nx)120 Nt

• One state – more bytes than atoms in visible universe!

• Need to approximate

(3Nx)N Nt
Monday, July 29, 13



Harmonic Oscillator

• “Second Quantization”
(Each point in space (or momentum) is like an HO)

• Two-particle Hamiltonian

⇤H =
⇤p2

2m
+

m�2⇤x2

2
= �h�

�
⇤a†⇤a+

d

2

⇥
, [⇤a, ⇤a†] = 1, �⇤a†⇤a⇥ = n

⇧H =

� �

⇤⇧a†⇧a⌅⇤⇥⇧
na

Ea + ⇧b
†⇧b⌅⇤⇥⇧
nb

Eb

⇥

⌅�

�
V ⇧a†⇧a⌅⇤⇥⇧

na

⇧b
†⇧b⌅⇤⇥⇧
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Harmonic Oscillator
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Harmonic Oscillator

• Quadratic part easy to solve.

• Interactions make problem hard

⇤H =
⇤p2

2m
+

m�2⇤x2

2
= �h�

�
⇤a†⇤a+

d

2

⇥
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Methods
• Perturbation theory

Weak interactions, parameter expansion

order unity.) We therefore conclude that the P-wave su-
perfluid/BEC phase P1 may be observed in asymmetric
Fermi gases as one approaches the S-wave Feshbach reso-
nance from the BEC regime.

Our results are justified in weak coupling. The omitted
preexponential factors, however, depend on higher-order
induced interactions. It is expected that the resulting fac-
tors are of order unity. We also note that the pairing
interaction induced by single phonon exchange is related
to the effective mass m!=m " 1# F1=3 through the
Landau parameter F1 " $NFUP. Effective mass correc-
tions are thus higher order, but they would increase the
density of states at the Fermi surface, and thus increase the
magnitude of the P-wave gap and TP

c .
BCS regime.—Next, we show that all proposed asym-

metric Fermi-liquid phases are unstable towards a two-
component P-wave superfluid due to the exchange of
density fluctuations. This occurs in the BCS regime and
is denoted by P2 in our phase diagram Fig. 1. We start from
a two-component asymmetric Fermi gas with Fermi mo-
menta k"F > k#F, and calculate the induced interactions in
weak coupling. To lowest order in the S-wave interaction
4!a@2=m, the induced interaction for back-to-back scat-
tering is given by [15]:

U↑↑
ind(0, !p1 − !p2) = ↓ ↓

!p1,↑ −!p1,↑

!p2,↑ −!p2,↑

= −N↓
F

(
4πa!2

m

)2

L |!p1 − !p2| / (2!k↓
F)

)
. (14)

The induced interaction for the minority fermions is ob-
tained by interchanging the spin labels. As before, in weak
coupling we neglect the frequency dependence and con-
sider momenta on the Fermi surface. Thus, L%y& denotes
the static Lindhard function

 L%y& " 1

2
# 1$ y2

4y
ln
!!!!!!!!
1# y
1$ y

!!!!!!!!: (15)

The importance of induced interactions for superfluidity
has been pointed out for symmetric Fermi systems: in weak
coupling for S-wave pairing [16], for P-wave pairing with
repulsive interaction [17], and close to the Feshbach reso-
nance [18] based on [19]. In addition, it has been shown
that induced interactions significantly suppress the super-
fluid gaps in neutron stars [20,21]. For P-wave pairing in
neutron stars, it is known that central induced interactions
are attractive [22], but repulsive spin-orbit fluctuations
dominate this effect [21].

The resulting P-wave superfluid gap for the majority
component is given by !"

P ' ""F exp(1=%N"
FU

""
P&), where U""

p

denotes the P-wave projection of the induced interaction as
in Eq. (5) [23]. This leads to

 

!"
P

""F
' exp

"
$ !2

4k"Fk
#
Fa

2L1%k"F=k#F&

#
; (16)

with the P-wave superfluid gap for the minority component
given by interchanging the spin labels. The asymmetry
enters through the function
 

L1%z& "
5z2 $ 2

15z4
lnj1$ z2j$ z2 # 5

30z
ln
!!!!!!!!
1$ z
1# z

!!!!!!!!$
z2 # 2

15z2
;

which has the limiting behavior

 L1%z& !

8><
>:

z2=18 where z * 1;
"# %7$ 4 ln2&%z$ 1&=15 where z + 1;
2 ln%z&=%3z2& where z , 1:

For the symmetric case, we recover the result of [17], !P '
"F exp($!2=%4k2Fa2"&), with " " %2 ln2$ 1&=5; however,
the work of [17] considered repulsive S-wave interactions.
In our case, interspecies S-wave pairing will dominate for
the symmetric system. The phase P2 will start for some
small but finite asymmetry, and the deviations in the ex-
ponent will be linear in (z$ 1).

For large asymmetries k"F , k#F, the P-wave gap of the
majority component is

 

!"
P

""F
' exp

"
$ 3!2

2%2k#Fa&2 ln%k"F=k#F&
k"F
k#F

#
; (17)

while that of the minority component is

 

!#
P

"#F
' exp

"
$ 18!2

%2k#Fa&2
k"F
k#F

#
: (18)

The majority component has a larger gap, but both are
suppressed for large asymmetry.

For fixed k#F, the minority gap !#
P decreases monotoni-

cally for increasing asymmetry, while for fixed k"F, the
majority gap !"

P has a maximum at k#F + 0:77k"F, due to
the maximum of L1%z&=z " 0:11 for z " 1:3:

 

!";max
P

""F
' exp

"
$ !2

0:11%2k"Fa&2
#
: (19)

Finally, we note that the P2 phase does not destabilize
LOFF, or similar phases, whose condensation energy is
parametrically the same as that of the S-wave BCS phase
where !S ' exp%!=2kFa&. Thus, the P-wave energy gain
is parametrically smaller in weak coupling.

Discussion.—Several asymmetric phases proposed in
the literature contain Fermi surfaces, including the normal
Fermi-liquid phases as well as the gapless breached pair
phases. Kohn and Luttinger [24] pointed out that, at zero
temperature, all Fermi surfaces are unstable in the presence
of interactions. We have shown that, in weak coupling,
induced interactions lead to the formation of P-wave
superfluids with maximal gaps for intermediate asymme-
tries. Thus, the suggested normal Fermi-liquid phases and

PRL 97, 020402 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
14 JULY 2006

020402-3
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Methods
• Perturbation theory

Weak interactions, parameter expansion

order unity.) We therefore conclude that the P-wave su-
perfluid/BEC phase P1 may be observed in asymmetric
Fermi gases as one approaches the S-wave Feshbach reso-
nance from the BEC regime.

Our results are justified in weak coupling. The omitted
preexponential factors, however, depend on higher-order
induced interactions. It is expected that the resulting fac-
tors are of order unity. We also note that the pairing
interaction induced by single phonon exchange is related
to the effective mass m!=m " 1# F1=3 through the
Landau parameter F1 " $NFUP. Effective mass correc-
tions are thus higher order, but they would increase the
density of states at the Fermi surface, and thus increase the
magnitude of the P-wave gap and TP

c .
BCS regime.—Next, we show that all proposed asym-

metric Fermi-liquid phases are unstable towards a two-
component P-wave superfluid due to the exchange of
density fluctuations. This occurs in the BCS regime and
is denoted by P2 in our phase diagram Fig. 1. We start from
a two-component asymmetric Fermi gas with Fermi mo-
menta k"F > k#F, and calculate the induced interactions in
weak coupling. To lowest order in the S-wave interaction
4!a@2=m, the induced interaction for back-to-back scat-
tering is given by [15]:

U↑↑
ind(0, !p1 − !p2) = ↓ ↓

!p1,↑ −!p1,↑

!p2,↑ −!p2,↑

= −N↓
F

(
4πa!2

m

)2

L |!p1 − !p2| / (2!k↓
F)

)
. (14)

The induced interaction for the minority fermions is ob-
tained by interchanging the spin labels. As before, in weak
coupling we neglect the frequency dependence and con-
sider momenta on the Fermi surface. Thus, L%y& denotes
the static Lindhard function

 L%y& " 1

2
# 1$ y2

4y
ln
!!!!!!!!
1# y
1$ y

!!!!!!!!: (15)

The importance of induced interactions for superfluidity
has been pointed out for symmetric Fermi systems: in weak
coupling for S-wave pairing [16], for P-wave pairing with
repulsive interaction [17], and close to the Feshbach reso-
nance [18] based on [19]. In addition, it has been shown
that induced interactions significantly suppress the super-
fluid gaps in neutron stars [20,21]. For P-wave pairing in
neutron stars, it is known that central induced interactions
are attractive [22], but repulsive spin-orbit fluctuations
dominate this effect [21].

The resulting P-wave superfluid gap for the majority
component is given by !"

P ' ""F exp(1=%N"
FU

""
P&), where U""

p

denotes the P-wave projection of the induced interaction as
in Eq. (5) [23]. This leads to

 

!"
P

""F
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"
$ !2

4k"Fk
#
Fa

2L1%k"F=k#F&

#
; (16)

with the P-wave superfluid gap for the minority component
given by interchanging the spin labels. The asymmetry
enters through the function
 

L1%z& "
5z2 $ 2

15z4
lnj1$ z2j$ z2 # 5

30z
ln
!!!!!!!!
1$ z
1# z

!!!!!!!!$
z2 # 2

15z2
;

which has the limiting behavior

 L1%z& !

8><
>:

z2=18 where z * 1;
"# %7$ 4 ln2&%z$ 1&=15 where z + 1;
2 ln%z&=%3z2& where z , 1:

For the symmetric case, we recover the result of [17], !P '
"F exp($!2=%4k2Fa2"&), with " " %2 ln2$ 1&=5; however,
the work of [17] considered repulsive S-wave interactions.
In our case, interspecies S-wave pairing will dominate for
the symmetric system. The phase P2 will start for some
small but finite asymmetry, and the deviations in the ex-
ponent will be linear in (z$ 1).

For large asymmetries k"F , k#F, the P-wave gap of the
majority component is

 

!"
P

""F
' exp

"
$ 3!2

2%2k#Fa&2 ln%k"F=k#F&
k"F
k#F

#
; (17)

while that of the minority component is
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P

"#F
' exp

"
$ 18!2

%2k#Fa&2
k"F
k#F

#
: (18)

The majority component has a larger gap, but both are
suppressed for large asymmetry.

For fixed k#F, the minority gap !#
P decreases monotoni-

cally for increasing asymmetry, while for fixed k"F, the
majority gap !"

P has a maximum at k#F + 0:77k"F, due to
the maximum of L1%z&=z " 0:11 for z " 1:3:

 

!";max
P

""F
' exp

"
$ !2

0:11%2k"Fa&2
#
: (19)

Finally, we note that the P2 phase does not destabilize
LOFF, or similar phases, whose condensation energy is
parametrically the same as that of the S-wave BCS phase
where !S ' exp%!=2kFa&. Thus, the P-wave energy gain
is parametrically smaller in weak coupling.

Discussion.—Several asymmetric phases proposed in
the literature contain Fermi surfaces, including the normal
Fermi-liquid phases as well as the gapless breached pair
phases. Kohn and Luttinger [24] pointed out that, at zero
temperature, all Fermi surfaces are unstable in the presence
of interactions. We have shown that, in weak coupling,
induced interactions lead to the formation of P-wave
superfluids with maximal gaps for intermediate asymme-
tries. Thus, the suggested normal Fermi-liquid phases and
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Methods
• Perturbation theory

Weak interactions, parameter expansion

• Numerical methods
DMRG, Quantum Monte Carlo, No-core Shell Model, Coupled Cluster

• Experiment
Cold Atoms

• Models, Effective Theory
Mean Field, Density Functional Theory, Hydrodynamics
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tions are thus higher order, but they would increase the
density of states at the Fermi surface, and thus increase the
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BCS regime.—Next, we show that all proposed asym-

metric Fermi-liquid phases are unstable towards a two-
component P-wave superfluid due to the exchange of
density fluctuations. This occurs in the BCS regime and
is denoted by P2 in our phase diagram Fig. 1. We start from
a two-component asymmetric Fermi gas with Fermi mo-
menta k"F > k#F, and calculate the induced interactions in
weak coupling. To lowest order in the S-wave interaction
4!a@2=m, the induced interaction for back-to-back scat-
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the static Lindhard function
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has been pointed out for symmetric Fermi systems: in weak
coupling for S-wave pairing [16], for P-wave pairing with
repulsive interaction [17], and close to the Feshbach reso-
nance [18] based on [19]. In addition, it has been shown
that induced interactions significantly suppress the super-
fluid gaps in neutron stars [20,21]. For P-wave pairing in
neutron stars, it is known that central induced interactions
are attractive [22], but repulsive spin-orbit fluctuations
dominate this effect [21].

The resulting P-wave superfluid gap for the majority
component is given by !"
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For the symmetric case, we recover the result of [17], !P '
"F exp($!2=%4k2Fa2"&), with " " %2 ln2$ 1&=5; however,
the work of [17] considered repulsive S-wave interactions.
In our case, interspecies S-wave pairing will dominate for
the symmetric system. The phase P2 will start for some
small but finite asymmetry, and the deviations in the ex-
ponent will be linear in (z$ 1).
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The majority component has a larger gap, but both are
suppressed for large asymmetry.

For fixed k#F, the minority gap !#
P decreases monotoni-

cally for increasing asymmetry, while for fixed k"F, the
majority gap !"

P has a maximum at k#F + 0:77k"F, due to
the maximum of L1%z&=z " 0:11 for z " 1:3:
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Finally, we note that the P2 phase does not destabilize
LOFF, or similar phases, whose condensation energy is
parametrically the same as that of the S-wave BCS phase
where !S ' exp%!=2kFa&. Thus, the P-wave energy gain
is parametrically smaller in weak coupling.

Discussion.—Several asymmetric phases proposed in
the literature contain Fermi surfaces, including the normal
Fermi-liquid phases as well as the gapless breached pair
phases. Kohn and Luttinger [24] pointed out that, at zero
temperature, all Fermi surfaces are unstable in the presence
of interactions. We have shown that, in weak coupling,
induced interactions lead to the formation of P-wave
superfluids with maximal gaps for intermediate asymme-
tries. Thus, the suggested normal Fermi-liquid phases and
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Mean Field Theory

• Introduce “mean fields” to make Hamiltonian quadratic

• Single particles in an effective potential

• Self-consistent problem

• Equivalent to variational formulation:

V�a†�a�b
†�b � �a†�a⇥µa + �b

†�b⇥µb + �a†�b
†
�+

⇥µa = V ⇥�b
†�b⇤ , ⇥µb = V ⇥�a†�a⇤ , � � V ⇥�b�a⇤

��⇥ � �0 + ��H� �H0⇥0 N 3Nx Nt
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Density Functional 
Theory (DFT)

• The (exact) ground state density in any external 
potential V(x) minimizes a functional (Hohenberg 
Kohn):

• Functional may be complicated (non-local)
• Need to find physically motivated approximations

• (think adjustable Mean Field Theory) (N) 3Nx Nt
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Density Functional 
Theory (DFT)

• Define functional with physically motivated model

• Fit parameters to experiment/QMC

• Functional extrapolates from small to large

• Seems very effective for the Unitary Fermi Gas
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SLDA: Fit to QMC

• Three parameters

• Fit all boxes from 2 to 120
particles per box

Forbes, Gandolfi, Gezerlis (2011, 2012)

2

FIG. 1. (color online) Ground-state energy-density ⌦ = E /EFG of N+
fermions in a periodic cubic box at the unitary limit. The circles with
error bars are the result of using a quadratic least-squares extrapolation
to zero effective range of our new QMC results. The solid curve
is the best fit SLDA DFT. The light dotted curve is the functional
considered in [19] with � = 0.69. For comparison, we have plotted
the previous best estimate ⌦S = 0.40(1) (red square) and the current
estimate ⌦S = 0.383(1) below it to the far right of the figure. Inset: we
show the typical effective-range dependence ⌦ (kF re) with the best fit
1� error bounds for all-point cubic (solid dark green) and five-point
quadratic (hatched light yellow) polynomial fits. Note that: a) the
five-point quadratic model is consistent with the full cubic model and
has a comparable extrapolation error, and b) the inflection point near
kF re ⇧ 0.16 necessitates a higher-order fit for larger ranges (cubic
is sufficient for the ranges shown here). Results for N+ = 40 show
the same qualitative behaviour; hence, for the other points we use the
five-point quadratic extrapolation.

tion introduced to reduce the statistical error. The antisym-
metrized product of s-wave pairing functions ⇤(ri j⌥) defines
the nodal structure:

⇤(r) = ⇧
n
� n eikn·r + ⇥̃ (r). (2)

The sum is truncated (we include ten coefficients) and the
omitted short-range tail is modelled by the phenomenological
function ⇥̃ (r) chosen to ensure smooth behavior near zero
separation. We use the same form for ⇥̃ (r) as in [6] with the
values b = 0.5 and c = 5. We vary the 10 coefficients � n 
for each N+ to minimize the energy as described in Ref. [24].
Representative nodal structures are defined by the coefficients
in Table I. We find that the same ansatz suffices for different
effective ranges, but that independent optimization is required
for each N+.

We simulate the Hamiltonian:

H =
h̄2

2m

⇤
�

N+

⇧
k=1

⌅2
k � 4v0µ2 ⇧

i, j⌥
sech2(µri j⌥)

⌅
, (3)

with an interspecies interaction of the modified Pöschl-Teller
type (off-resonance intraspecies interactions are neglected).
We tune to infinite s-wave scattering length by setting v0 = 1:
the effective range becomes re = 2/µ . To extrapolate to the

zero-range limit, we simulate at µ/kF � {12.5,24,36,48,60}
for which 0.03 < kF re < 0.16. A careful examination of ad-
ditional ranges up to kF re ⌅ 0.35 for N+ = 40 and N+ = 66
(see the inset in Fig. 1) reveals that a three-parameter quadratic
model in re is necessary and sufficient to extrapolate our results
without a systematic bias; the results are shown in Fig. 1.

The energies exhibit definite finite-size effects for N+ �
50, but are essentially featureless for larger N+. This lack of
structure is confirmed by the best fit DFT (discussed below)
and disagrees with the results presented in Ref. [10]. The
values of ⌦ for N+ > 50 are distributed about the best fit value
⌦S ⇧ 0.383(1), and represent the lowest variational bounds to
date. Part of the decrease from previous results is due to the
careful extrapolation to zero effective range. The remainder
is due to the improved optimization of the variational wave
function.

To model the finite-size effects we turn to a local DFT for
the unitary Fermi gas that generalizes the SLDA originally
presented in Ref. [20]. In addition to the total density n+ =
2⇧n|vn|2, the SLDA includes both kinetic  + = 2⇧n|⌅vn|2 and
anomalous densities ⌃ = ⇧n unv⇥n. (The + index signifies the
sum of the contributions coming from the two components a
and b; un(r) and vn(r) are the Bogoliubov quasiparticle wave
functions.) The original three-parameter SLDA functional has
the form

ESLDA =
h̄2

m

�
�
2
 ++⇥ 3

10
(3⌥2)2/3n5/3

+

⇥
+g⌃†⌃ , (4)

where � is the inverse effective mass; ⇥ is the self-energy; and
⌅ , which controls the pairing, enters through the regularized
coupling g = 1/(n1/3

+ /⌅�⇥/�) where ⇥ ⌃ ⇤ is a momentum
cutoff that we take to infinity (see Ref. [5] for details). Using
the equations for homogeneous matter in the thermodynamic
limit, one can numerically replace the parameters ⇥ and ⌅
with the more physically relevant quantities ⌦S and ⇧ = �/EF ,
where � is the pairing gap.

In principle, the DFT can be expressed in terms of only the
density n+ and its gradients. References [21] consider local for-
mulations of this type (called Extended Thomas-Fermi (ETF)
functionals). Since gradients vanish in the periodic box, ETF
functionals reduce to EETF(n+)⇤ ⌦SEFG and exhibit no finite-
size structure, contrary to the QMC results. Reference [19]
adds � +, but without ⌃†⌃ , the finite-size effects do not cor-
relate with the QMC behavior (see Fig. 1), and the best fit to

N+ a0 a1 a2 a3 a4 a5 a6 a8 a9 a10

10 1600 350 49 16 12 14 14 11 9.0 6.7
40 160 91 27 0.49 -2.8 -0.086 2.2 2.9 2.5 1.9
80 -24 13 12 8.2 5.1 3.7 2.7 2.0 1.6 1.0

120 -51 -17 0.51 7.8 6.3 5.8 4.6 2.5 1.7 1.0

TABLE I. Sample coefficients of the pairing function (2) � n =

10�4aI where I =  n 2 = n2
x + n2

y + n2
z = k2L2/4⌥2. Higher-order

coefficients are set to zero.
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Bosons are “easy”

• Gross-Pitaevskii Equation (GPE)

• (all) bosons in single ground state
• Include interactions through mean field

• Non-linear Schrödinger equation

• Only one wave function

E[�] =

�
3�x

�
�h2|��(�x)|2

2mB
+ VF(�x)⇥F + g

|�|4

2

⇥

⇤t� =

�
�

�2

2mB
+ [V + g|�|2]

⇥
�

3 Nx Nt

BEC
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Fermions are harder

• Pauli Exclusion (blocking)
• Particles in different states

• Must track N wavefunctions
• Non-linear Schrödinger equation
for each wavefunction

Hartree-Fock–Bogoliubov (HFB), Bogoliubov de-Gennes (BdG)

• Must use symmetries or supercomputers

ı⇤t⇥n = H[⇥]⇥n =

�
���2

2m � µ+U �†

� ��2

2m + µ�U

⇥�
un

vn

⇥

N 3Nx Nt

Fermi Surface

a b

kFa kFb
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DFT: Fermion still hard

ı⇤t⇥n = H[⇥]⇥n =

�
���2

2m � µ+U �†

� ��2

2m + µ�U

⇥�
un

vn

⇥

N 3Nx NtBulgac, Luo, Magierski, Roche, Yu (2011)
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DFT: Fermion still hard

ı⇤t⇥n = H[⇥]⇥n =

�
���2

2m � µ+U �†

� ��2

2m + µ�U

⇥�
un

vn

⇥

N 3Nx NtBulgac, Luo, Magierski, Roche, Yu (2011)
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GPE model for UFG?

• Think:
• Boson = Fermion pair (dimer)

• Galilean Covariant (fixes mass)

• Match Unitary Equation of State

• “Extended Thomas-Fermi” (ETF) model

E[�] =

�
3�x

�
|��(�x)|2

4mF
+ VF(�x)⌅F + ⇤E(⌅F, {�⌅F})

⇥

ı⇧t� =

�
�

�2

4mF
+ 2[VF + ⇤⇥(⌅F, {�⌅F})]

⇥
�

⇤F = 2|�|2

EFG � ⇤
5/2
F

⇥F = E �
FG(⇤F) � ⇤

3/2
F
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Image Credit

Comparison
Fermions
SLDA TDDFT

Gross Pitaevskii
model

Bulgac et al. (Science 2011)
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Image Credit

Comparison
Fermions
SLDA TDDFT

Gross Pitaevskii
model

Bulgac et al. (Science 2011)

• Fermions:
• Simulation hard!
• Evolve 104-106 wavefunctions
• Requires supercomputers

• GPE:
• Simulation much easier!
• Evolve 1 wavefunction
• Use supercomputers to study 
large volumes
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Matching Theories:
The Good

• Galilean Covariance (fixes mass/density relationship)

• Equation of State

• Hydrodynamics
• speed of sound (exact)
• phonon dispersion (to order q3)
• static response (to order q2)
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Figure 3. Comparison of the linear response for the ugpe (top) and two fermionic dfts (bottom). The linear response of the bdg
which has ⌅ = 0.5906 · · · and � = 0.6864 · · ·EF (see also [7]) is on the left; the linear response of the slda tuned to ⌅ = 0.41 and
� = 0.502EF to match [8] is on the right. The ugpe has only the single tunable parameter ⌅, which is chosen as shown to match
the corresponding fermionic theory below. ¶ The bosonic ugpe reproduces the low-frequency response, but breaks down for
⌥ � 2� at the pair-breaking threshold: The slope of the phonon dispersion relationship is reproduced, but the curvature differs
between the fermionic and bosonic theories.

The ugpe has no transverse response. This is qualita-
tively consistent with the current estimate of the param-
eters c1/c0 = �3/8+ ⇥/4+O(⇥2) and c2 = 0+O(⇥2), or
taking the three-dimensional limit ⇥ = 1

c1 � �2

15⇧2(2⌅)3/2
+O(⇥2), c2 = 0+O(⇥2).

Thus, the leading order ⇥ expansion is consistent with
⇤ = 8/45 = 0.17 – slightly smaller than the natural value
⇤ = 1/4.

The vanishing of c2 is consistent in both approxima-
tions, and represents a shortcoming of the ugpe. As ar-
gued in [15], the transverse response should be positive
requiring c2 > 0. This is consistent with the fermionic
response shown in figure 3 which demonstrate that the
phonon dispersion ⌥q has a small negative curvature
implying c2 � 2

3 |c1|. Thus, the coefficients c1 and c2
likely have a similar magnitude in the Fermionic theory,
in contrast to the prediction of the ⇥ expansion.

To end this section, we consider the numerical values

of the leading order corrections using ⌅ = 0.374 [3]:

⌥q ⇥ 1� 8.5(c1 + 3
2c2)

q2

k2F
, ⌃(q) ⇥ 1+ 17.(c1 � 9

2c2)
q2

k2F
.

In the ugpe we have c1 � �0.029. Thus, we see that
the corrections to the leading order dynamics are quite
small, and since the physical values of c1 and c2 have
opposite signs, the correction to the dynamics through
⌥q is further suppressed by cancellation. The highest
sensitivity to the low-energy coefficients is thus through
the combination that enters the dynamic response ⌃(q)
(see [16]), and low energy dynamics are rather insensi-
tive to the limitation that c2 vanishes in the ugpe. The
partly explains the success that the ugpe enjoys at low-
energy.

VI. VORTEX DYNAMICS

Many properties of vortex dynamics that follow from
the gpe are well understood in the Bose context and
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Figure 3. Comparison of the linear response for the ugpe (top) and two fermionic dfts (bottom). The linear response of the bdg
which has ⌅ = 0.5906 · · · and � = 0.6864 · · ·EF (see also [7]) is on the left; the linear response of the slda tuned to ⌅ = 0.41 and
� = 0.502EF to match [8] is on the right. The ugpe has only the single tunable parameter ⌅, which is chosen as shown to match
the corresponding fermionic theory below. ¶ The bosonic ugpe reproduces the low-frequency response, but breaks down for
⌥ � 2� at the pair-breaking threshold: The slope of the phonon dispersion relationship is reproduced, but the curvature differs
between the fermionic and bosonic theories.

The ugpe has no transverse response. This is qualita-
tively consistent with the current estimate of the param-
eters c1/c0 = �3/8+ ⇥/4+O(⇥2) and c2 = 0+O(⇥2), or
taking the three-dimensional limit ⇥ = 1

c1 � �2

15⇧2(2⌅)3/2
+O(⇥2), c2 = 0+O(⇥2).

Thus, the leading order ⇥ expansion is consistent with
⇤ = 8/45 = 0.17 – slightly smaller than the natural value
⇤ = 1/4.

The vanishing of c2 is consistent in both approxima-
tions, and represents a shortcoming of the ugpe. As ar-
gued in [15], the transverse response should be positive
requiring c2 > 0. This is consistent with the fermionic
response shown in figure 3 which demonstrate that the
phonon dispersion ⌥q has a small negative curvature
implying c2 � 2

3 |c1|. Thus, the coefficients c1 and c2
likely have a similar magnitude in the Fermionic theory,
in contrast to the prediction of the ⇥ expansion.

To end this section, we consider the numerical values

of the leading order corrections using ⌅ = 0.374 [3]:

⌥q ⇥ 1� 8.5(c1 + 3
2c2)

q2

k2F
, ⌃(q) ⇥ 1+ 17.(c1 � 9

2c2)
q2

k2F
.

In the ugpe we have c1 � �0.029. Thus, we see that
the corrections to the leading order dynamics are quite
small, and since the physical values of c1 and c2 have
opposite signs, the correction to the dynamics through
⌥q is further suppressed by cancellation. The highest
sensitivity to the low-energy coefficients is thus through
the combination that enters the dynamic response ⌃(q)
(see [16]), and low energy dynamics are rather insensi-
tive to the limitation that c2 vanishes in the ugpe. The
partly explains the success that the ugpe enjoys at low-
energy.

VI. VORTEX DYNAMICS

Many properties of vortex dynamics that follow from
the gpe are well understood in the Bose context and
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Figure 3. Comparison of the linear response for the ugpe (top) and two fermionic dfts (bottom). The linear response of the bdg
which has ⌅ = 0.5906 · · · and � = 0.6864 · · ·EF (see also [7]) is on the left; the linear response of the slda tuned to ⌅ = 0.41 and
� = 0.502EF to match [8] is on the right. The ugpe has only the single tunable parameter ⌅, which is chosen as shown to match
the corresponding fermionic theory below. ¶ The bosonic ugpe reproduces the low-frequency response, but breaks down for
⌥ � 2� at the pair-breaking threshold: The slope of the phonon dispersion relationship is reproduced, but the curvature differs
between the fermionic and bosonic theories.

The ugpe has no transverse response. This is qualita-
tively consistent with the current estimate of the param-
eters c1/c0 = �3/8+ ⇥/4+O(⇥2) and c2 = 0+O(⇥2), or
taking the three-dimensional limit ⇥ = 1

c1 � �2

15⇧2(2⌅)3/2
+O(⇥2), c2 = 0+O(⇥2).

Thus, the leading order ⇥ expansion is consistent with
⇤ = 8/45 = 0.17 – slightly smaller than the natural value
⇤ = 1/4.

The vanishing of c2 is consistent in both approxima-
tions, and represents a shortcoming of the ugpe. As ar-
gued in [15], the transverse response should be positive
requiring c2 > 0. This is consistent with the fermionic
response shown in figure 3 which demonstrate that the
phonon dispersion ⌥q has a small negative curvature
implying c2 � 2

3 |c1|. Thus, the coefficients c1 and c2
likely have a similar magnitude in the Fermionic theory,
in contrast to the prediction of the ⇥ expansion.

To end this section, we consider the numerical values

of the leading order corrections using ⌅ = 0.374 [3]:

⌥q ⇥ 1� 8.5(c1 + 3
2c2)

q2

k2F
, ⌃(q) ⇥ 1+ 17.(c1 � 9

2c2)
q2

k2F
.

In the ugpe we have c1 � �0.029. Thus, we see that
the corrections to the leading order dynamics are quite
small, and since the physical values of c1 and c2 have
opposite signs, the correction to the dynamics through
⌥q is further suppressed by cancellation. The highest
sensitivity to the low-energy coefficients is thus through
the combination that enters the dynamic response ⌃(q)
(see [16]), and low energy dynamics are rather insensi-
tive to the limitation that c2 vanishes in the ugpe. The
partly explains the success that the ugpe enjoys at low-
energy.

VI. VORTEX DYNAMICS

Many properties of vortex dynamics that follow from
the gpe are well understood in the Bose context and

Forbes and Sharma (in prep)
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Matching Theories:
The Bad

• GPE has ρ=2|Ψ|2
• Density vanishes in core of vortex
• Implies ∫|Ψ|2 conserved

• (Approximate conservation ∫|Ψ|2 in Fermi 
simulations provides measure of applicability)

• No “normal state”
• Two fluid model needed?
• Coarse graining (transfer to “normal” component)
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Vortex Structure

1.2 realization from the gross -pitaevskii equation

plt.subplot(122)
plt.plot(x, np.sqrt(s.n(x)/a.bc[1]), ’�’ + c)

plt.subplot(121)
plt.plot(v.rho[:,0], v.rho[:,1], ’ : ’)
plt.axis([0,4,0,1])
plt.xlabel(’$k_F r$’)
plt. title (’$n/n_\infty$’)

plt.subplot(122)
plt.plot(v.delta[:,0], v.delta[:,1], ’ : ’)
plt.axis([0,4,0,1])
plt.xlabel(’$k_F r$’)
plt. title (’$\Delta/\Delta_\infty$’)
plt.legend(loc=’lower right’)
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Figure 1: Comparison of slda vortex density (left) and gap (right) with
etf.
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Ancilotto, L. Salasnich, and F. Toigo (2012)

GPE vs. Experiment 
J Low Temp Phys

Fig. 4 1D density profiles at different times t showing the collision of two strongly interacting Fermi
clouds. Left part: our calculations [25]. Right part: experimental data from Ref. [40]. The normalized
density is in units of 10−2/µm per particle

We simulated the whole procedure by using the Runge-Kutta-Gill fourth-order
method [41, 42] to propagate in time the solutions of the following non-linear
Schrödinger equation (NLSE)

i! ∂

∂t
Ψ =

[
− !2

4m
∇2 + 2U(r) + 2

!2

2m

(
3π2)2/3

ξ |Ψ |4/3 + (1 − 4λ)
!2

4m

∇2|Ψ |
|Ψ |

]
Ψ

(31)

which is strictly equivalent [7, 8, 36, 37] to Eqs. (17) and (18), with E (n,∇n) given
by Eq. (4), and

Ψ (r, t) =
√

n(r, t) eiθ(r,t) (32)

Since the confining potential used in the experiments is cigar-shaped, we have ex-
ploited the resulting cylindrical symmetry of the system by representing the solution
of our NLSE on a 2-dimensional (r, z) grid. During the time evolution of our system,
when the two clouds start to overlap, many ripples whose wavelength is comparable
to the interparticle distance are produced in the region of overlapping densities. In or-
der to properly compare our results with the experimental data of resonant fermions
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Soliton 
Motion
Soliton?

Moves much slower 
than expected

4

emergent particle nature. The motion is to a high degree
deterministic, as soliton positions for di↵erent realiza-
tions of the experiment at varying wait times lie on the
same classical sinusoidal trajectory. The force on the soli-
ton is provided by the trapping force experienced by the
atoms missing in the soliton, N

s

m!2
z

z ⌘ M!2
z

z, where
|N

s

| is the number of missing atoms, and M = N
s

m < 0
the bare mass of the soliton. It is negative as the soli-
ton is a density depletion. Introducing the e↵ective, or
inertial mass of the soliton M⇤, this force causes an ac-
celeration z̈ = � M

M

⇤!2
z

z. Since we observe oscillations,
M⇤ must be negative as well, implying that the soliton is
an e↵ective particle that decreases its kinetic energy as it
speeds up. One obtains a direct relation [27] between the
relative e↵ective mass M⇤/M and the normalised soliton
period T

s

/T
z

:

M⇤

M
=

✓
T
s

T
z

◆2

(2)

The observed soliton period of oscillation T
s

is about one
order of magnitude longer than the trapping period T

z

for single atoms. This directly indicates an extreme en-
hancement of the relative e↵ective mass. In general, the
di↵erence between the e↵ective mass M⇤ and the bare
massM of the soliton arises from the phase slip�� across
the soliton, which implies a superfluid counterflow [27].
For the soliton to move, an entire sheet of atoms thus has
to flow past it. The di↵erence M � M⇤ is the mass of
that sheet, given by the mass density multiplied by the
entire soliton volume. In contrast, the soliton’s bare mass
M is only due to the mass deficit of |N

s

| atoms and can
become much smaller than M⇤ when the soliton is filled.
For weakly interacting BECs, where solitons are devoid
of particles, the e↵ective mass is still on the same order of
the bare mass, (M⇤/M)BEC = 2. This leads to an oscilla-
tion period that is only

p
2 times longer than T

z

[20, 35],
as has been observed in experiments [14, 17]. In the BCS
limit, where only a minute fraction �0/EF

of the gas

contributes to Cooper pairing, |N
s

| / �0/EF

/ e�
⇡

2kF |a|

and thus the soliton’s relative e↵ective mass can be ex-
pected to become exponentially large.

Indeed, as shown in Fig. 2, we find that the soliton
period, and hence the relative e↵ective mass, increases
dramatically as the interactions are tuned from the limit
of Bose-Einstein condensation (Fig. 2a) towards the BCS
limit. At 700G, where 1/k

F

a = 2.6(2), the system repre-
sents a strongly interacting Bose gas of molecules [7]. The
soliton period is T

s

= 4.4(5)T
z

, already three times longer
than in the case of a weakly interacting BEC. At the Fes-
hbach resonance (Fig. 2d), we measure a soliton period of
T
s

= 14(2)T
z

, corresponding to a relative e↵ective mass
of M⇤/M = 200(50). This is more than fifty times larger
than the result of mean field Bogoliubov-de Gennes the-
ory in three dimensions [27, 36] that predicts M⇤/M = 3.
Note that the superfluid is fully three-dimensional: on

20

10

0

T s
/T

z

3 2 1 0 -1
 Interaction Parameter 1/kFa

1

25

100

250

500

M
*/M

2

FIG. 3. Soliton period and e↵ective mass versus in-
teraction strength in the BEC-BCS crossover. The
soliton period is shown as a function of the interaction pa-
rameter 1/kF a in the cloud center, for three di↵erent trap as-
pect ratios: � = 15(1) (black circles), 6.2(7) (red diamonds)
and 3.3(1) (orange squares). The error bars correspond to
the typical spread over five measurements and the solid lines
are guides to the eye. The soliton period strongly increases
from the BEC-regime towards the Feshbach resonance, where
Ts/Tz = 12(2) for � = 15(1), and to the BCS side. This di-
rectly reflects an extreme enhancement of the relative e↵ective
mass M⇤/M = T 2

s /T
2

z , which we attribute to strong quantum
fluctuations and filling of Andreev bound states. The result
for a weakly interacting BEC, Ts/Tz =

p
2, is shown as the

dashed line. The star marks the mean field prediction [27]
M⇤/M = T 2

s /T
2

z = 3.

resonance, the chemical potential µ ⇡ 35~!?, where !?
is the radial trapping frequency. Still, for very elongated
traps, one expects to reach a universal quasi-1D regime
where the tight radial confinement is irrelevant for prop-
agation along the long axis [37]. This prompted us to
study the dependence of the soliton period on the aspect
ratio of our trap.
Figure 3 summarizes our measurements for the soliton

period and the relative e↵ective mass as a function of
the interaction parameter 1/k

F

a throughout the BEC-
BCS crossover, for aspect ratios � = 3.3, 6.2 and 15.
The strong increase of M⇤/M towards the BCS regime
is observed for all trap geometries. The normalised soli-
ton period T

s

/T
z

appears to converge to a limiting value
for the most elongated trap: The normalised period
changes by only 15% as the aspect ratio is increased by
more than a factor of two from 6.2 to 15. This indi-
cates that the soliton dynamics approach the universal
quasi-1D limit. Even in a much less elongated trap with
� = 3.3(1) the soliton period is only slightly increased
by about 30% compared to � = 6.2, accompanied by an
increased susceptibility of the soliton towards bending or

2
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FIG. 1. Creation and observation of solitons in a
fermionic superfluid. (a) Superfluid pairing gap �(z) for
a stationary soliton, normalised by the bulk pairing gap �

0

,
and density n(z) of the localized bosonic (fermionic) state
versus position z, in the BEC (BCS) regime of the crossover,
in units of the BEC healing length (BCS coherence length)
⇠. (b) Schematic of the experiment. A phase-imprinting laser
beam twists the phase of one half of the trapped superfluid by
approximately ⇡. The soliton generally moves at non-zero ve-
locity v

soliton

. (c) Optical density and (d) residuals of atom
clouds at 815 G, imaged via the rapid ramp method [26],
showing solitons at various hold times after creation. One pe-
riod of soliton oscillation is shown. The in-trap aspect ratio
was � = 6.5(1). (e) Radially integrated residuals as a function
of time revealing long-lived soliton oscillations. The soliton
period is Ts = 12(2)Tz, much longer than the trapping period
of Tz = 93.76(5)ms, revealing an extreme enhancement of the
soliton’s relative e↵ective mass M⇤/M .

is now on the order of the interparticle spacing and the
system is a crossover superfluid in between the BEC and
BCS limits of superfluidity [7–9]. A unified description

for solitons in fermionic superfluids throughout the BEC-
BCS crossover has been found within mean-field theory
via the Bogoliubov-de Gennes (BdG) equation for a spa-
tially varying gap �(z) [19, 27–29]:
⇢✓

�~2r2

2m
� µ

◆
�
z

+�(z)�
x

�✓
u
n

v
n

◆
= E

n

✓
u
n

v
n

◆
(1)

where µ is the chemical potential, �
x,y,z

are Pauli ma-
trices, and u

n

(~r) and v
n

(~r) are the amplitudes describ-
ing the particle and hole character of Bogoliubov quasi-
particles of energy E

n

(we omit spin indices). The
order parameter �(z) is related to the quasi-particle
amplitudes by the self-consistency relation �(~r) =
�g

P
n

u
n

(~r)v⇤
n

(~r), where g is the coupling strength, tun-
able via the scattering length a between fermions. The
BdG equations have been shown to reduce to the Gross-
Pitaevskii equation for bosonic molecules in the BEC-
limit [30], where stationary solitons are devoid of parti-
cles. As the interactions are tuned from the BEC to the
BCS regime, the BdG equations predict an increasing
filling of the soliton [19]. At the Feshbach resonance, in
the unitarity limit where the scattering length diverges, a
substantial part of this filling is due to so-called Andreev
bound states, localised fermionic states bound to the soli-
ton, also known to reside inside vortex cores [2]. Here,
the gas density in the vicinity of the soliton is predicted
to be suppressed by 80% of the bulk density, as opposed
to 100% for solitons in Bose-Einstein condensates.

In the BCS limit of weak attractive interactions, the
BdG equations reduce to the Andreev equation, a Dirac
equation where the pairing gap �(z) plays the role of a
spatially varying mass coupling particles and holes [3]
(see Supplemental Material). The same equation de-
scribes solitons in conducting polymers [5]. The solu-
tion for the pairing gap is known [5] to be �(z) =
�0 tanh(z/⇠BCS), as in the BEC limit, i.e. it is again
represented by Fig. 1a) but with ⇠ = ⇠BCS the BCS co-
herence length. The density profile of the localised state
in Fig. 1a) here represents the fermionic Andreev bound
state, as opposed to the density of uncondensed bosons
in the BEC regime. Solitons in the BCS regime are ex-
pected to be essentially completely filled in. Indeed, in
this limit of long-range overlapping Cooper pairs, only a
minute fraction of particles near the Fermi surface takes
part in pairing, and the reduction of the pairing gap at
the soliton a↵ects the density only very weakly.

CREATING SOLITONS IN A FERMIONIC
SUPERFLUID

The creation of solitons in a strongly interacting
fermionic superfluid poses several challenges. First, a
superfluid with a soliton is not in its ground state, so the
temperature of the gas has to be low enough for the soli-
ton not to decay rapidly into thermal excitations. Such
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Vortex Rings?
• Result of expected snake instability

• Naturally move slowly
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FIG. 2. (color online) Oscillations of a vortex ring in a vortex ring in a 24⇥ 24⇥ 96 lattice (left) and a 32⇥ 32⇥ 128 lattice
(right). We start with a cylindrical cloud (not shown, see Ref. [36, 37]) with central density ⇢F = k

3
F /3/⇡

2 where the Fermi
wavevector kF = 1/�x = 1. The harmonic trapping potential along z is then increased slowly while applying the quantum
cooling algorithm described in [36] to cool the system to a state with two separated clouds. These are the phase imprinted with
�� = ⇡ and the knife edge is removed, allowing the soliton to evolve as shown. More details and movies may be found in [37]
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FIG. 1. Creation and observation of solitons in a
fermionic superfluid. (a) Superfluid pairing gap �(z) for
a stationary soliton, normalised by the bulk pairing gap �

0

,
and density n(z) of the localized bosonic (fermionic) state
versus position z, in the BEC (BCS) regime of the crossover,
in units of the BEC healing length (BCS coherence length)
⇠. (b) Schematic of the experiment. A phase-imprinting laser
beam twists the phase of one half of the trapped superfluid by
approximately ⇡. The soliton generally moves at non-zero ve-
locity v

soliton

. (c) Optical density and (d) residuals of atom
clouds at 815 G, imaged via the rapid ramp method [26],
showing solitons at various hold times after creation. One pe-
riod of soliton oscillation is shown. The in-trap aspect ratio
was � = 6.5(1). (e) Radially integrated residuals as a function
of time revealing long-lived soliton oscillations. The soliton
period is Ts = 12(2)Tz, much longer than the trapping period
of Tz = 93.76(5)ms, revealing an extreme enhancement of the
soliton’s relative e↵ective mass M⇤/M .

is now on the order of the interparticle spacing and the
system is a crossover superfluid in between the BEC and
BCS limits of superfluidity [7–9]. A unified description

for solitons in fermionic superfluids throughout the BEC-
BCS crossover has been found within mean-field theory
via the Bogoliubov-de Gennes (BdG) equation for a spa-
tially varying gap �(z) [19, 27–29]:
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where µ is the chemical potential, �
x,y,z

are Pauli ma-
trices, and u

n

(~r) and v
n

(~r) are the amplitudes describ-
ing the particle and hole character of Bogoliubov quasi-
particles of energy E

n

(we omit spin indices). The
order parameter �(z) is related to the quasi-particle
amplitudes by the self-consistency relation �(~r) =
�g

P
n

u
n

(~r)v⇤
n

(~r), where g is the coupling strength, tun-
able via the scattering length a between fermions. The
BdG equations have been shown to reduce to the Gross-
Pitaevskii equation for bosonic molecules in the BEC-
limit [30], where stationary solitons are devoid of parti-
cles. As the interactions are tuned from the BEC to the
BCS regime, the BdG equations predict an increasing
filling of the soliton [19]. At the Feshbach resonance, in
the unitarity limit where the scattering length diverges, a
substantial part of this filling is due to so-called Andreev
bound states, localised fermionic states bound to the soli-
ton, also known to reside inside vortex cores [2]. Here,
the gas density in the vicinity of the soliton is predicted
to be suppressed by 80% of the bulk density, as opposed
to 100% for solitons in Bose-Einstein condensates.

In the BCS limit of weak attractive interactions, the
BdG equations reduce to the Andreev equation, a Dirac
equation where the pairing gap �(z) plays the role of a
spatially varying mass coupling particles and holes [3]
(see Supplemental Material). The same equation de-
scribes solitons in conducting polymers [5]. The solu-
tion for the pairing gap is known [5] to be �(z) =
�0 tanh(z/⇠BCS), as in the BEC limit, i.e. it is again
represented by Fig. 1a) but with ⇠ = ⇠BCS the BCS co-
herence length. The density profile of the localised state
in Fig. 1a) here represents the fermionic Andreev bound
state, as opposed to the density of uncondensed bosons
in the BEC regime. Solitons in the BCS regime are ex-
pected to be essentially completely filled in. Indeed, in
this limit of long-range overlapping Cooper pairs, only a
minute fraction of particles near the Fermi surface takes
part in pairing, and the reduction of the pairing gap at
the soliton a↵ects the density only very weakly.

CREATING SOLITONS IN A FERMIONIC
SUPERFLUID

The creation of solitons in a strongly interacting
fermionic superfluid poses several challenges. First, a
superfluid with a soliton is not in its ground state, so the
temperature of the gas has to be low enough for the soli-
ton not to decay rapidly into thermal excitations. Such
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QCD Vacuum Animation: Derek B. Leinweber (http://www.physics.adelaide.edu.au/~dleinweb/VisualQCD/Nobel/index.html)
Neutron Star Structure: (Dany Page) Landscape: (modified from a slide of A. Richter)

The nuclear landscape

• Nuclear systems are complex many-
body systems with rich properties 

• No “one size fits all” method

• All theoretical approaches need to be 
linked

Nucleonic matter: 

Infinite system of interacting neutrons 
and protons in the thermodynamic limit.

Introduction Formalism Results scale Summary

Which theoretical method(s)?

! No “one size fits all” theory for nuclei

! All theoretical approaches need to be linked

Non-Empirical Pairing Functional for nuclei T. Duguet

Friday, March 12, 2010

QCD Vacuum

The 
Nuclear 
Landscape

•Lattice QCD,
 nucleons, interactions

•QMC, etc.
small to medium nuclei

•DFT, 
medium to large nuclei

•Neutron stars?
Molecular Dynamics
Hydrodynamics

Monday, July 29, 13
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Dany Page: http://www.astroscu.unam.mx/neutrones/NS-Picture/NS-Picture.html

Neutron Stars

Neutron superfluid in Crust is 
almost a Unitary Fermi Gas

(as ~ -7re, kFas ~ -10)

Many relevant phenomena
•Vortex pinning (glitches)
•Heat transport
•Equation of State

Can we use cold-atoms to model 
nuclear matter?
•More complicated interactions

•Three-body, tensor forces etc.

Monday, July 29, 13

http://www.astroscu.unam.mx/neutrones/NS-Picture/NS-Picture.html
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Dany Page: http://www.astroscu.unam.mx/neutrones/NS-Picture/NS-Picture.html

Glitches
•Rapid increase in pulsation rate

•Anderson and Itoh (1975) 
suggested pinned superfluid 
vortices

Pulsar Astronomy by Andrew G. Lyne and Francis Graham-Smith
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From Cold Atoms to 
Neutron Stars

• Use (expensive) Fermi calculations to determine 
parameters (vortex nucleus interaction)
Validate with cold atoms
Time-dependent method scales well: Bulgac, Forbes and Sharma (2013)

• Fit a GPE-like theory
• Use this to model macroscopic dynamics
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Conclusion
Femion Superfluids

• QCD

• Cold Atoms

• Nuclei

• Neutron Stars

• Dark Matter

• Universal aspects of 
many body physics

• Similar techniques, 
different physical 
problems

• Use one field to test and 
understand others

Monday, July 29, 13


