The Unitary Fermi Gas: Universal Physics from Cold Atoms to Neutron Stars

Michael McNeil Forbes Institute for Nuclear Theory University of Washington, Seattle

Outline

• From QCD to Cold Atoms: Universality in Physics

BEC-BCS crossover, Unitary Fermi Gas, Benchmarks: Convergence of Theory and Experiment Novel Polarized Phases: p-wave superfluids, LOFF supersolid crystals

• The Many Body Problem

Classical and Quantum: Bosons and Fermions Quantum Monte Carlo (QMC), Mean Field Theory, Density Functional Theory (DFT)

- From Cold Atoms to Nuclei and Neutron Stars DFT, Vortex pinning, Glitches
- From Cold Atoms to Cold Dark Matter

• One theory describes different systems

Cold Atoms

Tune interactions to model other systems

• Neutron Stars, Nuclei

Interactions accidentally like cold atoms

- Superconductors
- •Quark Matter
- Dark Matter

Fermionic Superfluids

Nuclei neutrons and protons

Neutron Matter $k_F \sim fm^{-1}$ $a_{nn} = -19 \text{ fm}$ $r_{nn} = 2 \text{ fm}$ Unitary Fermi Gas $a = \infty$

 $r_e = 0$

Other Superfluids

- Superconductors (charged + phonons)
- Quarks (gluon interactions, Dark Matter?)
- ³He (p-wave)

Cold Atoms

- $k_F \sim \mu m^{-1}$
- Tuneable a
- $r_{nn} \sim 0.1 \text{ nm}$

Many systems

- different species
- dipole interactions
- optical lattices
- quantum simulators

• Short distance irrelevant:

- •At long distance (r > R) potentials equivalent $V_1 \equiv V_2$
- Characterized by scattering length α

• Short distance irrelevant:

- •At long distance (r > R) potentials equivalent $V_1 \equiv V_2$
- Characterized by scattering length α

"Renormalization"

• Describe physics by low energy "effective" theory

• Replace complicated high-energy (short distance) with a few low energy parameters (α and R with cutoff)

"Renormalization"

• Describe physics by low energy "effective" theory

• Replace complicated high-energy (short distance) with a few low energy parameters (α and R with cutoff)

Unitary Fermi Gas

- •S-wave scattering length
- BEC Unitary BCS crossover

(use whatever interaction is convenient)

$$\begin{split} &\widehat{\mathcal{H}} = \int \left(\widehat{a}^{\dagger} \widehat{a} \mathbb{E}_{a} + \widehat{b}^{\dagger} \widehat{b} \mathbb{E}_{b} \right) - \int V \widehat{a}^{\dagger} \widehat{b}^{\dagger} \widehat{b} \widehat{a} \\ & \mathbb{E}_{a,b} = \frac{p^{2}}{2m} - \mu_{a,b}, \quad \mu_{\pm} = \frac{\mu_{a} \pm \mu_{b}}{2} \end{split}$$

- Dilute limit: interaction given by scattering length α
- Unitary limit $a = \infty$: No interaction length scale!
- Universal physics: Only scale is particle separation • $\mathcal{E}(\rho) = \xi \mathcal{E}_{FG}(\rho) \propto \rho^{5/3}$, $\xi=0.376(5)$
- Lithium 6 and dilute neutron matter in neutron stars $a_{nn} = -19 \text{ fm}$

Unitary Fermi Gas

•S-wave scattering length

• BEC – Unitary – BCS crossover

(use whatever interaction is convenient)

BEC Limit: Bosons

Strong attraction: bosonic "dimers"
Tightly bound pairs of fermions act like bosons

Schrödinger Eq.

$$i\hbar\partial_t\Psi = \left(-\frac{\hbar^2\nabla^2}{2m_B} + V + V(\Psi^2)\right)\Psi$$

- Wavefunction for a single particle
- Bose-Einstein Condensate (BEC)
 - Condensate wavefunction
 - •All particles in same state
 - Density $\rho = |\Psi|^2$

Gross Pitaevskii Eq. (GPE) $i\hbar\partial_{t}\Psi = \left(-\frac{\hbar^{2}\nabla^{2}}{2m_{R}} + V + V_{MF}(|\Psi|^{2})\right)\Psi$

- Interactions via "mean field" V_{MF} average (mean) of all particles
- Non-linear Schrödinger Equation
- Still evolve a single wavefunction

BCS Limit: Fermions

Weak attraction: fermions almost free
Pauli exclusion principle dominates

$$\iota \partial_{t} \Psi_{n} = \mathsf{H}[\Psi] \Psi_{n} = \begin{pmatrix} \frac{-\alpha \nabla^{2}}{2m} - \mu + \mathcal{U} & \Delta^{\dagger} \\ \Delta & \frac{\alpha \nabla^{2}}{2m} + \mu - \mathcal{U} \end{pmatrix} \begin{pmatrix} \mathfrak{u}_{n} \\ \mathfrak{v}_{n} \end{pmatrix}$$

Fermi Surface

h

 $N \overline{3N_x N_t}$

KFb

- Pauli Exclusion (blocking) Particles in different states
 KFa

 Must track N wavefunctions

 Non-linear Schrödinger equation for each wavefunction
 Hartree-Fock-Bogoliubov (HFB), Bogoliubov de-Gennes (BdG)
- Must use symmetries or supercomputers

$$\iota \partial_{t} \Psi_{n} = \mathsf{H}[\Psi] \Psi_{n} = \begin{pmatrix} \frac{-\alpha \nabla^{2}}{2m} - \mu + \mathcal{U} & \Delta^{\dagger} \\ \Delta & \frac{\alpha \nabla^{2}}{2m} + \mu - \mathcal{U} \end{pmatrix} \begin{pmatrix} \mathfrak{u}_{n} \\ \mathfrak{v}_{n} \end{pmatrix}$$

Pauli Exclusion (blocking)
Particles in different states
Must track N wavefunctions
Non-linear Schrödinger equation for each wavefunction

Hartree-Fock–Bogoliubov (HFB), Bogoliubov de-Gennes (BdG)

• Must use symmetries or supercomputers

 $\overline{N} \overline{3N_x} \overline{N_t}$

$$\iota \partial_{t} \Psi_{n} = \mathsf{H}[\Psi] \Psi_{n} = \begin{pmatrix} \frac{-\alpha \nabla^{2}}{2m} - \mu + \mathcal{U} & \Delta^{\dagger} \\ \Delta & \frac{\alpha \nabla^{2}}{2m} + \mu - \mathcal{U} \end{pmatrix} \begin{pmatrix} \mathfrak{u}_{n} \\ \mathfrak{v}_{n} \end{pmatrix}$$

- Pauli Exclusion (blocking)
 Particles in different states
- Must track N wavefunctions
 Non-linear Schrödinger equation for each wavefunction
 Hartree-Fock-Bogoliubov (HFB), Bogoliubov de-Gennes (BdG)
- Must use symmetries or supercomputers

 \overline{N} $\overline{3N}_{x}$ \overline{N}_{t}

Fermi Surface

$$\iota \partial_{t} \Psi_{n} = H[\Psi] \Psi_{n} = \begin{pmatrix} \frac{-\alpha \nabla^{2}}{2m} - \mu + U & \Delta^{\dagger} \\ \Delta & \frac{\alpha \nabla^{2}}{2m} + \mu - U \end{pmatrix} \begin{pmatrix} u_{n} \\ v_{n} \end{pmatrix}$$

kFa

Fermi Surface

h

 $N 3N_{x} N_{t}$

k_{Fb}

- Pauli Exclusion (blocking)Particles in different states
- Must track N wavefunctions
 Non-linear Schrödinger equation for each wavefunction
 Hartree-Fock-Bogoliubov (HFB), Bogoliubov de-Gennes (BdG)
- Must use symmetries or supercomputers

Unitary Fermi Gas

• Between: Properties of both BEC and BCS

• Strongly interacting: Non-perturbative

$$\begin{split} & \widehat{\mathcal{H}} = \int \left(\widehat{a}^{\dagger} \widehat{a} \mathbb{E}_{a} + \widehat{b}^{\dagger} \widehat{b} \mathbb{E}_{b} \right) - \int V \widehat{a}^{\dagger} \widehat{b}^{\dagger} \widehat{b} \widehat{a} \\ & \mathsf{E}_{a,b} = \frac{p^{2}}{2m} - \mu_{a,b}, \quad \mu_{\pm} = \frac{\mu_{a} \pm \mu_{b}}{2} \end{split}$$

- Unitary limit $a = \infty$: No interaction length scale!
- Universal physics:
 - • $\mathcal{E}(\rho) = \xi \mathcal{E}_{FG}(\rho) \propto \rho^{5/3}$, $\xi=0.376(5)$
- Simplest non-trivial model (dimensional analysis)
- Non perturbative (no small parameters)
- Rich phase structure

$$\begin{split} & \widehat{\mathcal{H}} = \int \left(\widehat{a}^{\dagger} \widehat{a} \mathbb{E}_{a} + \widehat{b}^{\dagger} \widehat{b} \mathbb{E}_{b} \right) - \int V \widehat{a}^{\dagger} \widehat{b}^{\dagger} \widehat{b} \widehat{a} \\ & \mathsf{E}_{a,b} = \frac{p^{2}}{2m} - \mu_{a,b}, \quad \mu_{\pm} = \frac{\mu_{a} \pm \mu_{b}}{2} \end{split}$$

- Unitary limit $a = \infty$: No interaction length scale!
- Universal physics:
 - • $\mathcal{E}(\rho) = \xi \mathcal{E}_{FG}(\rho) \propto \rho^{5/3}$, $\xi=0.376(5)$

• Simple, but hard to calculate! Bertsch Many Body X-challenge

Ku, Sommer, Cheuk, and Zwierlein 2012

Unitary Equation of State

• Only scales: T and N • One convex dimensionless function $h_T(\mu/T)$ $P = \left[Th_T\left(\frac{\mu}{T}\right)\right]^{5/2}$

• Measured to percent level: • $\xi_{exp} = 0.376(5)$

$$\begin{split} & \widehat{\mathcal{H}} = \int \left(\widehat{a}^{\dagger} \widehat{a} \mathbb{E}_{a} + \widehat{b}^{\dagger} \widehat{b} \mathbb{E}_{b} \right) - \int V \widehat{a}^{\dagger} \widehat{b}^{\dagger} \widehat{b} \widehat{a} \\ & \mathsf{E}_{a,b} = \frac{p^{2}}{2m} - \mu_{a,b}, \quad \mu_{\pm} = \frac{\mu_{a} \pm \mu_{b}}{2} \end{split}$$

- Unitary limit $a = \infty$: No interaction length scale!
- Universal physics:
 - • $\mathcal{E}(\rho) = \xi \mathcal{E}_{FG}(\rho) \propto \rho^{5/3}$, $\xi = 0.376(5)$
- Simplest non-trivial model (dimensional analysis)
- Non perturbative (no small parameters)
- Rich phase structure

BEC-BCS Crossover Phase Diagram (T=0)

Grand canonical BCS-BEC Crossover

No solid evidence for what happens in the middle here

Need precision measurements

Equal Fermi surfaces

Zero momentum pairs

k_{Fb}

Zero momentum pairs

Symmetric

Tightly bound pairs

Asymmetric?

Fermi Surface

Unequal Fermi surfacesFrustrates pairing

Intra-species P-wave Pairs

Kohn-Luttinger implies attractive at some l

Two coexisting superfluids

Asymmetric P-wave BEC

Intra-species P-wave Pairs

BEC and P-wave superfluids coexist homogeneously

Pairing promotes particles?

"Breach" in pairing

Still induced P-wave May need large mass ratio or structured interactions (not likely at weak coupling in cold atoms)

Pairs have Momenta? **k**_{Fb} b a State (LO) is crystal (supersolid) Pairs have momentum

DFT predicts (FF)LO at Unitarity: Supersolid!

Bulgac and Forbes PRL 101 (2008) 215301

Large density contrast (factor of 2)

Similar to contrast of vortex core

Superfluid vortices have holes

Bulgac et al. (Science 2011)

Large density contrast (factor of 2)

Similar to contrast of vortex core

DFT predicts (FF)LO at Unitarity: Supersolid!

Bulgac and Forbes PRL 101 (2008) 215301

Large density contrast (factor of 2)

Similar to contrast of vortex core

Observations: Nothing?

MIT Experimental data from Shin et. al (2008)

Paired core Polarized wings Maybe there are no interesting polarized superfluid phases?

DFT predicts (FF)LO at Unitarity: Supersolid!

Bulgac and Forbes PRL 101 (2008) 215301

Large density contrast (factor of 2)

Similar to contrast of vortex core

Observations: Inconclusive

• Need detailed structure or novel signature

MIT Experimental data from Shin et. al (2008)

Why FFLO not seen?

- It is not there:
 - •Other homogenous phases might be better.
 - •T might be too high (fluctuations kill 1D FFLO).
 - Trap frustrates formation (traps are not flat enough).
- It is not seen:
 - Noise washes out signature.
 - Small physical volume for FFLO.

• Need a nice flat trap: Large physical volume of FFLO

Cold Atoms

- Experimental Controls
 - Species, population, interactions, optical lattices
- Universal physics: quantum simulators? Can we simulate gauge theories? (Try to simulate lattice models)
- Benchmark Theory: Few to Many
- Unitary Fermi Gas models Neutron Matter

Universality

Fermionic Superfluids

Neutron Matter	
	$k_{F} \sim fm^{-1}$
Nuclei	$a_{nn} = -19 \text{ fm}$
neutrons	$r_{nn} = 2 \text{ fm}$
and protons	

Unitary Fermi Gas $a = \infty$

 $r_e = 0$

Other Superfluids

Superconductors (charged + phonons)

- Quarks (gluon interactions, Dark Matter?)
- ³He (p-wave)

Cold Atoms $k_F \sim \mu m^{-1}$

- Tuneable a
- $r_{nn} \sim 0.1 \text{ nm}$

Many systems

- different species
- dipole interactions
- optical lattices
- quantum simulators

QCD Vacuum Animation: Derek B. Leinweber (http://www.physics.adelaide.edu.au/~dleinweb/VisualQCD/Nobel/index.html) Neutron Star Structure: (Dany Page) Landscape: (modified from a slide of A. Richter)

Many Body Problem

• From microscopic...

quarks and gluons, electrons and photons, protons and neutrons, atoms

•... to macroscopic

nuclei, superconductors/superfluids, neutron stars, (dark matter)

- •One, two, (three, four)... many.
- Exact method fail quickly
 - Approximate, or make models

Classical

- Positions and velocities as functions of time:
 (x, y, z; p_x, p_y, p_z)
- One-body and two-body
 - Exact solutions
- Many two-body interactions

$$\vec{\mathbf{F}} = rac{\mathrm{GmM}}{\|\vec{\mathbf{r}}_1 - \vec{\mathbf{r}}_2\|^2}, \qquad \vec{\mathbf{F}} = -\vec{\nabla}V(\|\vec{\mathbf{r}}_1 - \vec{\mathbf{r}}_2\|)$$

Three Body

- Few exact solutons
- Enter chaos

Hut and J.N. Bahcall ApJ 268, 319-41 (1983)

Many Body

- Still tractable numerically
- Naïvely N²
- Usually N log(N)

John Dubinski (2008) <u>http://www.galaxydynamics.org/spiral_metamorphosis.html</u>

Quantum Systems

- Wavefunction $\Psi(x,t)$: $3N_x N_t$
- Exponentially hard: $(3N_x)^N N_t$
- Eg. Sn (Tin) A~120: $(3N_x)^{120} N_t$
 - •One state more bytes than atoms in visible universe!
- Need to approximate

Harmonic Oscillator

$$\widehat{H} = \frac{\widehat{p}^2}{2m} + \frac{m\omega^2 \widehat{x}^2}{2} = \hbar \omega \left(\widehat{a}^{\dagger} \widehat{a} + \frac{d}{2} \right), \qquad [\widehat{a}, \widehat{a}^{\dagger}] = 1, \qquad \langle \widehat{a}^{\dagger} \widehat{a} \rangle = n$$

• "Second Quantization"

(Each point in space (or momentum) is like an HO)

• Two-particle Hamiltonian

$$\widehat{\mathcal{H}} = \int \left(\underbrace{\widehat{a}^{\dagger} \widehat{a}}_{n_{a}} E_{a} + \underbrace{\widehat{b}^{\dagger} \widehat{b}}_{n_{b}} E_{b} \right) - \int V \underbrace{\widehat{a}^{\dagger} \widehat{a}}_{n_{a}} \underbrace{\widehat{b}^{\dagger} \widehat{b}}_{n_{b}}$$

Harmonic Oscillator

$$\widehat{H} = \frac{\widehat{p}^2}{2m} + \frac{m\omega^2 \widehat{x}^2}{2} = \hbar \omega \left(\widehat{a}^{\dagger} \widehat{a} + \frac{d}{2} \right), \qquad [\widehat{a}, \widehat{a}^{\dagger}] = 1, \qquad \langle \widehat{a}^{\dagger} \widehat{a} \rangle = n$$

• "Second Quantization"

(Each point in space (or momentum) is like an HO)

• Two-particle Hamiltonian

$$\widehat{\mathcal{H}} = \int \left(\underbrace{\widehat{a}^{\dagger} \widehat{a}}_{n_{a}} E_{a} + \underbrace{\widehat{b}^{\dagger} \widehat{b}}_{n_{b}} E_{b} \right) - \int V \underbrace{\widehat{a}^{\dagger} \widehat{a}}_{n_{a}} \underbrace{\widehat{b}^{\dagger} \widehat{b}}_{n_{b}}$$

Harmonic Oscillator

$$\widehat{H} = \frac{\widehat{p}^2}{2m} + \frac{m\omega^2 \widehat{x}^2}{2} = \hbar \omega \left(\widehat{a}^{\dagger} \widehat{a} + \frac{d}{2} \right), \qquad [\widehat{a}, \widehat{a}^{\dagger}] = 1, \qquad \langle \widehat{a}^{\dagger} \widehat{a} \rangle = n$$

 $(3N_x)^N N_t$

• Quadratic part easy to solve.

• Interactions make problem hard

$$\widehat{\mathcal{H}} = \int \left(\underbrace{\widehat{a}^{\dagger} \widehat{a}}_{n_{a}} E_{a} + \underbrace{\widehat{b}^{\dagger} \widehat{b}}_{n_{b}} E_{b} \right) - \underbrace{\int V \widehat{a}^{\dagger} \widehat{a} \, \underbrace{\widehat{b}^{\dagger} \widehat{b}}_{n_{b}}}_{n_{a}} \underbrace{E_{a}^{\dagger} \widehat{a} \, \underbrace{\widehat{b}^{\dagger} \widehat{b}}_{n_{b}}}_{n_{b}}$$

Methods

• Perturbation theory

Weak interactions, parameter expansion

Methods

Methods

Perturbation theory

Weak interactions, parameter expansion

Numerical methods

DMRG, Quantum Monte Carlo, No-core Shell Model, Coupled Cluster

• Experiment

Cold Atoms

• Models, Effective Theory

Mean Field, Density Functional Theory, Hydrodynamics

$$\begin{split} & \text{Mean Field Theory} \\ & \textbf{V}\widehat{a}^{\dagger}\widehat{a}\widehat{b}^{\dagger}\widehat{b} \approx \widehat{a}^{\dagger}\widehat{a}\delta\mu_{a} + \widehat{b}^{\dagger}\widehat{b}\delta\mu_{b} + \widehat{a}^{\dagger}\widehat{b}^{\dagger}\Delta + \text{h.c.} \\ & \delta\mu_{a} = V\langle\widehat{b}^{\dagger}\widehat{b}\rangle, \quad \delta\mu_{b} = V\langle\widehat{a}^{\dagger}\widehat{a}\rangle, \quad \Delta \sim V\langle\widehat{b}\widehat{a}\rangle \end{split}$$

• Introduce "mean fields" to make Hamiltonian quadratic

 $N 3N_{x} N_{t}$

- Single particles in an effective potential
- Self-consistent problem
- Equivalent to variational formulation:

$$\langle \Omega \rangle \leqslant \Omega_0 + \langle \widehat{\mathbf{H}} - \widehat{\mathbf{H}}_0 \rangle_0$$

Density Functional Theory (DFT)

- The (exact) ground state density in any external potential V(x) minimizes a functional (Hohenberg Kohn): $\int d^3x \{ \mathcal{E}[n(x)] + V(x)n(x) \}$
- Functional may be complicated (non-local)
 - Need to find physically motivated approximations

 $(N) 3N_x N_t$

• (think adjustable Mean Field Theory)

Density Functional Theory (DFT)

- Define functional with physically motivated model
- Fit parameters to experiment/QMC
- Functional extrapolates from small to large
- Seems very effective for the Unitary Fermi Gas

SLDA: Fit to QMC

$$\mathcal{E}(\mathbf{n},\tau,\mathbf{v}) = \alpha \frac{\tau}{\mathbf{m}} + \beta \frac{(3\pi^2 \mathbf{n})^{5/3}}{10\mathbf{m}\pi^2} + g_{\text{eff}} \mathbf{v}^{\dagger} \mathbf{v}$$

- Three parameters
- Fit all boxes from 2 to 120 particles per box

Forbes, Gandolfi, Gezerlis (2011, 2012)

Bosons are "easy" $E[\Psi] = \int d^{3}\vec{x} \, \left(\frac{\hbar^{2}|\nabla\Psi(\vec{x})|^{2}}{2m_{B}} + V_{F}(\vec{x})\rho_{F} + g\frac{|\Psi|^{4}}{2}\right)$ $i\partial_{t}\Psi = \left(-\frac{\nabla^{2}}{2m_{B}} + [V+g|\Psi|^{2}]\right)\Psi$

BEC

 $3 N_{\rm x} N_{\rm t}$

- Gross-Pitaevskii Equation (GPE)
- (all) bosons in single ground state
 Include interactions through mean field
- Non-linear Schrödinger equation
- Only one wave function

Fermions are harder

$$\iota \partial_{t} \Psi_{n} = H[\Psi] \Psi_{n} = \begin{pmatrix} \frac{-\alpha \nabla^{2}}{2m} - \mu + U & \Delta^{\dagger} \\ \Delta & \frac{\alpha \nabla^{2}}{2m} + \mu - U \end{pmatrix} \begin{pmatrix} u_{n} \\ v_{n} \end{pmatrix}$$

kFa

Fermi Surface

h

 $N 3N_{x} N_{t}$

k_{Fb}

- Pauli Exclusion (blocking)Particles in different states
- Must track N wavefunctions
 Non-linear Schrödinger equation for each wavefunction
 Hartree-Fock-Bogoliubov (HFB), Bogoliubov de-Gennes (BdG)
- Must use symmetries or supercomputers

DFT: Fermion still hard

$$\iota \partial_{t} \Psi_{n} = H[\Psi] \Psi_{n} = \begin{pmatrix} \frac{-\alpha \nabla^{2}}{2m} - \mu + U & \Delta^{\dagger} \\ \Delta & \frac{\alpha \nabla^{2}}{2m} + \mu - U \end{pmatrix} \begin{pmatrix} u_{n} \\ v_{n} \end{pmatrix}$$

Bulgac, Luo, Magierski, Roche, Yu (2011)

Monday, July 29, 13

DFT: Fermion still hard

$$\iota \partial_{t} \Psi_{n} = \mathsf{H}[\Psi] \Psi_{n} = \begin{pmatrix} \frac{-\alpha \nabla^{2}}{2m} - \mu + \mathcal{U} & \Delta^{\dagger} \\ \Delta & \frac{\alpha \nabla^{2}}{2m} + \mu - \mathcal{U} \end{pmatrix} \begin{pmatrix} \mathfrak{u}_{n} \\ \mathfrak{v}_{n} \end{pmatrix}$$

Bulgac, Luo, Magierski, Roche, Yu (2011)

• "Extended Thomas-Fermi" (ETF) model

Match Unitary Equation of State

Galilean Covariant (fixes mass)

• Boson = Fermion pair (dimer)

- •Think:
- $\iota \partial_{t} \Psi = \left(-\frac{\nabla^{2}}{4m_{F}} + 2[V_{F} + \xi \varepsilon(\rho_{F}, \{\nabla \rho_{F}\})] \right) \Psi$
- $E[\Psi]$

$$= \int d^{3}\vec{x} \left(\frac{|\nabla \Psi(\vec{x})|^{2}}{4m_{F}} + V_{F}(\vec{x})\rho_{F} + \xi \mathcal{E}(\rho_{F}, \{\nabla \rho_{F}\}) \right)$$

$$\rho_{\rm F} = 2|\Psi|^2$$
$$\mathcal{E}_{\rm FG} \propto \rho_{\rm F}^{5/2}$$

$$\varepsilon_F = \mathcal{E}_{FG}'(\rho_F) \propto \rho_F^{3/2}$$

Comparison

Fermions SLDA TDDFT

Gross Pitaevskii model

t=80.9726/eF, frame=150

Bulgac et al. (Science 2011)

Monday, July 29, 13

•Fermions:

- Simulation hard!
- Evolve 10⁴–10⁶ wavefunctions
- Requires supercomputers

•GPE:

- Simulation much easier!
- Evolve 1 wavefunction
- Use supercomputers to study large volumes

Monday, July 29, 13

30

25

20

10

5

00

30

25

20

10

5

00

≴ 15

* 15

Matching Theories: The Good

- Galilean Covariance (fixes mass/density relationship)
- Equation of State
- Hydrodynamics
 - speed of sound (exact)
 - phonon dispersion (to order q³)
 - static response (to order q²)

Forbes and Sharma (in prep)

Matching Theories: The Bad

- •GPE has $\rho{=}2|\Psi|^2$
 - Density vanishes in core of vortex
 - Implies $\int |\Psi|^2$ conserved
 - (Approximate conservation $\int |\Psi|^2$ in Fermi simulations provides measure of applicability)
- No "normal state"
 - Two fluid model needed?
 - Coarse graining (transfer to "normal" component)

Vortex Structure

2D GPE simulation

Data from Joseph, Thomas, Kulkarni, and Abanov PRL (2011)

GPE vs. Experiment

Ancilotto, L. Salasnich, and F. Toigo (2012)

Yefsah et al. (MIT Experiment) arXiv:1302.4736

Soliton Motion

Soliton?

Moves much slower than expected

Monday, July 29, 13
Vortex Rings?

Result of expected snake instability

Naturally move slowly

0.00 0.19 0.38 0.57 0.76 0.961.15 1.34 1.53 1.72 1.91 2.10 2.29 2.48 2.68 2.87 3.06 3.25 3.44 3.63 60

> Bulgac et al. arXiv:1306.4266

The same?

Yefsah et al. (MIT Experiment) arXiv:1302.4736

QCD Vacuum Animation: Derek B. Leinweber (http://www.physics.adelaide.edu.au/~dleinweb/VisualQCD/Nobel/index.html) Neutron Star Structure: (Dany Page) Landscape: (modified from a slide of A. Richter)

Neutron Stars

Neutron superfluid in Crust is almost a Unitary Fermi Gas $(a_s \sim -7r_e, k_Fa_s \sim -10)$

Many relevant phenomena

- Vortex pinning (glitches)
- Heat transport
- Equation of State

Can we use cold-atoms to model nuclear matter?

- More complicated interactions
 - Three-body, tensor forces etc.

Dany Page: http://www.astroscu.unam.mx/neutrones/NS-Picture/NS-Picture.html

Glitches

- Rapid increase in pulsation rate
- Anderson and Itoh (1975) suggested pinned superfluid vortices

Pulsar Astronomy by Andrew G. Lyne and Francis Graham-Smith

Dany Page: http://www.astroscu.unam.mx/neutrones/NS-Picture/NS-Picture.html

From Cold Atoms to Neutron Stars

- Use (expensive) Fermi calculations to determine parameters (vortex nucleus interaction)
 - Validate with cold atoms
 - Time-dependent method scales well: Bulgac, Forbes and Sharma (2013)

- Fit a GPE-like theory
 - Use this to model macroscopic dynamics

Conclusion Femion Superfluids

- •QCD
- Cold Atoms
- Nuclei
- Neutron Stars
- Dark Matter

- Universal aspects of many body physics
- Similar techniques, different physical problems
- Use one field to test and understand others