Microwave Resonant Cavities

in the Search for Dark Matter Axions

CARISA MILLER

ADVISOR: LESLIE ROSENBERG

UNIVERSITY OF WASHINGTON

REU FINAL REPORT

AUGUST 20, 2013

Outline

Background

- Problems: Dark Matter and the Strong CP Problem
- Solution: Axions

Searching for Axions

- Resonant Cavities
- ADMX

> What I Did All Summer

- Cavity Design and Construction
- Testing
- Results
- Conclusion

>Acknowledgements

Dark Matter

WHAT IS DARK MATTER?

We Have No Idea

We (maybe) understand ~4% of our universe

Composition of the Universe

Evidence for Dark Matter

➤CMB Data

➢ Bullet Cluster

➢ Galactic Rotation Curves

Composite: NASA, Markevitch et al., Clowe et al.

Strong CP Problem

WHY IS IT A PROBLEM?

CP Violation

➢QCD is expected to violate CP by the Standard Model

➤ Lack of neutron electric dipole moment
 ➤ Strong force is CP invariant → Strong CP Problem

Axions

TO THE RESCUE

What are Axions?

>A solution to the Strong CP Problem purposed by Peccei and Quinn (1977)

- Posit a hidden broken symmetry
- > New particle (Weinberg, Wilczek)
- Decays into two photons
 Has a lifetime of 10⁵⁰ seconds

3

Axions as Dark Matter

> At light masses, axions are excellent candidates for dark matter

$$\gg \sim 1 \mu eV < m_a < \sim 100 \mu eV$$

Abundant particle
 Found everywhere – in our solar system, this room, under your bed
 ~10¹⁵/cc

> Very weak coupling to ordinary matter

Searching for Axions

WITH RF CAVITIES

5

(D/L)2

6

7

8

2

3

4

0

1

← TM Modes TM₀₁₀ Main mode for axion conversion $f_{TM_{010}} \sim \frac{1}{D}$ \vec{E} \vec{B}

The Hunt

>Dark Matter axions convert to photons in a magnetic field

Strong magnetic field greatly reduces lifetime

(Inverse Primakoff Effect)

Large Quality Factor

Large Magnetic Field

> Better measurement if photon frequency corresponds to cavity's resonant frequency

What you want:

What You Don't Want:

- Large Cavity Volume
 Large Noise
 - > Thermal
 - > Amplifier

> <u>Also want</u>: ability to search over many frequencies

ADMX <u>Axion Dark Matter eXperiment</u>

> Approximately 1m length × 0.5m diameter

Large – 8 Tesla – magnet

Cryogenic temperatures – 100mK

➤SQUID amplifiers

> Tuning rods to change cavity frequency

ADMX Search Range

Resonant Cavities

AND ME

Parameters for Design

➢ Higher Frequencies

$$> f_{TM_{010}} \sim \frac{1}{D}$$
 means small diameter

> Intend range: roughly 2 – 5 GHz \rightarrow 3.5" diameter

> High Electrical Conductivity

Copper

Study Various Mode Structures

> Multiple cavities of different lengths

Design and Construction

Fitting In

With ADMX

Testing

Two antenna probes

- Measure Log |transmission|
- > Weakly coupled

Variable frequency source

Sweep across a range of frequencies

➤Three different lengths

Study different mode structures

Small Cavity Frequency Measurements

Frequency of the small, empty cavity as observed compared with the expected frequencies of various modes

Empty Cavity Measurements

SMALL

LARGE

Measurements with Rod

SMALL

MEDIUM

Comparisons

Power Transmission (dB)

of frequencies of each cavity length at different rod positions

EMPTY CENTER EDGE Frequency (GHz) Frequency (GHz) Frequency (GHz) 2.5 4.5 3.5 4.5 3.5 4.5 3 3.5 2.5 3 4 2.5 3 4 0 0 -10 -10 -20 -20 Power Transmission (dB) -30 -30 -30 -40 -40 -40 Power Transmission (dB) -50 -50 -50 -60 -60 -60 -70 -70 -70 - Print -80 -80 -80 -90 -90 -90 -100 -100 -100 -Small -Medium Large TM010

Quality Factor

 $\succ Q = \frac{f}{\Delta f}$

≻Q ≈ 2000

Less than expected
 low data resolution
 room

temperature

Small Cavity Mode Map

Medium Cavity Mode Map

Large Cavity Mode Map

Conclusion

> Axions are highly motivated dark matter candidates

>ADMX is searching for axions in a wide mass range using RF cavities

>My cavities:

- > Designed to fit within current ADMX hardware
- > Extend current ADMX search range into higher frequencies
- Could be installed and tested at cryogenic temperatures by 2014

Acknowledgements

Advisor: Leslie Rosenberg

Helpful People

Christian Boutan

Michael Hotz

Dmitry Lyapustin

Gray Rybka

Jim Sloan

Andrew Wagner

People that Kept Me From Losing Fingers Ron Musgrave

David Hyde

People that Kept Us Organized

Subhadeep Gupta Alejandro Garcia Janine Nemerever Linda Vilett

And Also

NSF

Questions?

COMMENTS? CONCERNS?