Development of the Zeeman Slower for the Ultra-cold Atomic Interference Experiment

Daniel Gochnauer

Outline

- Introduction laser cooling, Zeeman slowers
- Design optimizing magnetic field
- Construction winding procedure and techniques
- Results acquisition of data, compare with expectations
- Simulation analyzing velocity profile and distribution

Introduction, scattering force

•
$$F_{scatt} = \hbar k \frac{\Gamma}{2} \frac{s}{1+s+4\delta^2/\Gamma^2}$$

• where $s = l/l_{sat}$
• $a_{max} = \frac{F_{max}}{m} = \frac{\Gamma}{2} \frac{\hbar k}{m}$
• $a = f a_{max}$
• Oven Laser
*Foot, 195

Introduction, Doppler shift

•
$$\delta = \delta_{lab} + \vec{k}\vec{v}$$

Introduction, Zeeman effect

•
$$\delta = \delta_{lab} + \vec{k}\vec{v} + \frac{\overrightarrow{\mu_B}\overrightarrow{B}}{\hbar}$$

Introduction, derivation

• Constant acceleration

•
$$v_0^2 = v^2 + 2az$$

• $v_0^2 = 2aL$
• $v = \sqrt{v_0^2 - 2az}$
• $v = v_0\sqrt{1 - z/L}$
• $\vec{k}\vec{v} = \frac{\overline{\mu}\vec{B}}{\hbar}$
• $B(z) = \frac{k\hbar v_0}{\mu_B}\sqrt{1 - z/L}$

Introduction, slower equations

Ideal Zeeman slower

•
$$a_{max} = \frac{\Gamma}{2} \frac{\hbar k}{m}$$

• $v_{capt} = \sqrt{2 f a_{max} L}$
• $B_{max} = \frac{\hbar k v_{capt}}{\mu_B}$

•
$$B(z) = B_{max} \left(1 - \sqrt{1 - \frac{z}{L}} \right)$$

Ideal magnetic field profile

⁽at 35 Amps)

Ideal magnetic field profile

Ideal velocity distributions Velocity (m/s)

*Mayera, Minarik, Shroyer, McIntyre

Ideal velocity distributions

Ideal velocity distributions

Optimizing the design

• Axial Magnetic Field of a single coil:

•
$$B(z) = \left(\frac{\mu_0 I}{d}\right) / \left(1 + \left(\frac{2 z}{d}\right)^2\right)^{3/2}$$

• Summary equation used for optimization:

•
$$B(z) = \sum_{j=0}^{l} \sum_{i=0}^{n_j} \left(\frac{\mu_0 I}{d_j} \right) / \left(1 + \left(\frac{2 z_i}{d_j} \right)^2 \right)^{3/2}$$

Final design, geometry

- Dimensions in inches
 - indicates compensation "reverse" coils
 - indicates normal "forward" coils
 - indicates "offset" coils

Final design, magnetic field profile

⁽at 35 Amps)

Final design, magnetic field profile

• Deviation from ideal magnetic field

Winding procedure, materials

- Specifications of the wire used:
 - Insulated hollow square copper wire
 - Dimensions in inches:

• General notes on winding:

• Segments of wire, for separate cooling lines

• Assembly of all layers, drying on the lathe

- Unwrap and label the lead wires
- Check for material flaws

Recall geometric design and terms

- Dimensions in inches
 - indicates compensation "reverse" coils
 - indicates normal "forward" coils
 - indicates "offset" coils

• Reverse layers:

• Relative positions of the above three:

• Simultaneous forward and reverse layers:

• Simultaneous forward and reverse layers:

Simulations, velocity profiles Position dependent velocity profiles 400 Axial Magnetic Field / Gauss 300 Axial Velocity / (m/s) 200 100 detuning = 0Γ current = 35 A30 10 20 60 40 50 Position / cm offset = 0 A

Simulations, velocity profiles Position dependent velocity profiles 500 Gauss 400 Axial Velocity / (m/s) Axial Magnetic Field 300 200 100 detuning = -7Γ current = 35 A60 30 10 20 50 40 Postion / cm offset = 20 A

Simulations, velocity distributions

Simulations, velocity distributions

Conclusions and Future Work

- Conclusions
 - Zeeman slower works as predicted
 - Offset field works as expected
- Future work
 - Optimized currents and detuning
 - Additional components for the apparatus
 - Ultra-cold atomic interference experiment

References and Bibliography

Foot, C.J. (2005). Atomic Physics. Oxford University Press, 178-217.

- Yamaguchi, A. (2008). *Metastable state of ultracold and quantum degenerate ytterbium atoms: High-resolution spectroscopy and cold collisions*. Kyoto University.
- Mayera, S.K., Minarik, N.S., Shroyer, M.H., and McIntyre D.H. (2002). Zeeman-tuned slowing of rubidium using σ^+ and σ^- polarized light. *Optics Communications*, **210**, 259.

Maloney, N. (2008). Magnetic coils for ultracold atom control. Walla Walla University.

- Phillips, W.D., Prodan, J.V., and Metcalf, H.J. (1985). Laser cooling and electromagnetic trapping of neutral atoms. *J. Opt. Soc. Am. B*, **2**, 1751.
- Phillips, W.D. And Metcalft, H. (1981). Laser deceleration of an atomic beam. *Physical Review Letters*, **48**, 596.

Cohen-Tannoudji, C.N. (1998). Manipulating atoms with photons. Rev. Mod. Phys., 70, 707.

- Chu, S. (1998). The manipulating of neutral particles. Rev. Mod. Phys., 70, 685.
- Gupta, S., Leanhardt, A.E., Cronin, A.D., and Pritchard, D.E. (2001). Coherent manipulation of atoms with standing light waves. *C. R. Acad. Sci. Paris*, **4**, 1–17.
- Gupta, S., Dieckmann, K., Hadzibabic, Z., and Pritchard, D.E. (2002). Contrast interferometry using Bose-Einstein condensates to measure h/m and α . *Physical Review Letters*, **89**, 140401.

Acknowledgements

- UW Physics REU
 - National Science Foundation
 - University of Washington Department of Physics
 - Department of Energy's National Institute for Nuclear Theory
- Alejandro Garcia
- Deep Gupta
- Ben Plotkin-Swing

