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The Muon anomaly

.The magnetic moment of a particle:
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.A g factor of 2 is expected for point-like fermions

.There is a contribution to g from interactions with virtual fields
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The Muon anomaly

1) Electromagnetic interactiorA
1 1 1

2) Strong interaction

3) Weak interaction

4) New physics — supersymmetry?




The Muon g-2 Experiment

Goal: measure the anomalous magnetic moment of the muon to the
precision of 0.14 ppm

Sy~ Spin - direction s,

1) Collect polarized muons - ( ————
collectp RO
2) Precession in (g — 2) storage ring m'-decay

3) Measure arrival time and energy of positron from muon decay

Time (us) modulo 100 us




The Muon g-2 Experiment

Determining the anomaly:
Wp

U
H/'up _ a)a/wp

Ay

4/, = 3.183345137(85)
. From muonium hyperfine level measurements

4
. w,: Difference frequency E3 i 3
e T 2
- Wy =W — W, =a B y s
a S Cc u (muc ::E 1
. From detection of positrons T ?
o
T -2
=
3
- Wy Larmor frequency of free protons 4 10-

. Measured with 400 NMR probes 4321001234

radial distance (cm)




Usea ™/,
pulse in NMR

/-

A moment precessing about a strong field m may be flipped with the
addition of a weak field H; rotating with a frequency close to resonance




NMR
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NMR Time Constants

. T : spin-lattice relaxation

. Time until magnetization reaches thermal equilibrium value (z-direction)
. T, : spin-spin relaxation

. due to magnetization parallel to rf field and field inhomogeneities

= NMR Signal




Shimming the magnet

Yole

-Shimming: removing inhomogeneities in the field

Wedge

.Passive shims
. lron pieces on the yoke and in gaps e
. Pole face alignment
. Edge and wedge shims

-Active shims
. Control of superconductor current
. Surface correction coils
. Dipole and gap correction loops




CENPA test magnet

Air gap
Yoke

Superconducting
coil
Wedge shim

Pole piece

Edge shim

Storage region
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Original Signals
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The best signals were around 3.8 ms (until amplitude reaches 1/e)




Helmholtz coils

h (distance between the coils) should be equal to R (the radius
of a coil) for maximum uniformity

Using the Biot-Savart Law, the field at midpoint between coils:
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Helmholtz coils
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A linear gradient is created between the coils




Helmholtz coils

Magnetic flux density norm (G)

Magnetic flux density norm (G)
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Helmholtz coils




Results —varying tr

Current: 0 A
Length: 0.144 ms

&
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Current: 0.45 A
Length: 7.864 ms

e current

Current: 0.35 A
Length: 1.064 ms

Tine {ns}

Current: 0.55 A
Length: 0.584 ms




Results — 2-probe coils
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Maximizing both probes at the same current does not work, but one may be used for
calibration. Long signals are repeatable.




Extracting the Frequenc
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Zero-crossing method
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Fourier Transform , =

method




E r ro r Signal Length vs. Current

9
8 ®
7 i
o ¢
£ ° Do
£ 5 i .
[sT) . .
g4 ¢
53 ¢ %
&
1 3 .
0@ @ coreepecen PPN Lo SR °
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Current (A)
Zero Counting Error vs. Signal Length Centroid Error vs. Signal Length
0.012 0.009
¢ 0.008
0.01 ' e
0.007
= 0.008 = 0.006
< < 0.005
T 0.006 - ‘g =< »
o B S 0.004 +:
& & .
0.004 ° 0.003 @
-9 0002 = @
0.002 = @ T L 0001 | e
e @... ...’..... ...... L T S Q0L ® .
. ® Y 0 .‘... ...... @ coennne oo resenasene -0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Length (ms) Length (ms)




Repairing Probes

-Diagnose problems with old probes using a vector impedance meter

- Repair broken circuitry or determine that the sample has leaked

Working Probe Resonances
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Future Work

. Test the temperature dependence of the NMR probes

-Diagnose problems with old probes

-Re-design and rebuild 400 probes

- Test and calibrate the probes using the coils
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Questions?




NMR

A system with angular momentum j, magnetic
moment m, and gyromagnetic ratio y:
dj

—_— X
- M By m
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= m(t) = ym(t) x By

Add a perpendicular field B4 (t) rotating about By
with angular velocity w

%m(t) =ym(t) X [Bg + B1(t)]

Set Aw = w — wy and move to the rotating frame

(‘;—‘;‘)rel = m(t) X [Aw — ;]

Resonance condition: Aw K w4

The moment can be flipped with a small rotating
field B1




How NMR works — Quantum Mechanics

The state vector of the spin system:

[P (@) = ar(O)+) + a_(O)]-)
The Hamiltonian:
H(t) = —M.B(t) = —yS.[Bgy + B1(t)]
From the spin matrices:
. h “)9 wle—iwt
2 wlelwt wo
Define functions b, (t)=e!®t/2q_ (t) and

b_(t)=e~@t/2q_(t) and set up set up the Schrodinger
equation

. d A
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; d _ @1 Aw
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The Hamiltonian is now time-independent (we are in
the rotating frame)

ih = [1h(t)) =H [ (1))

Find the transition probability

Py () = {=Ip@O)I? = |(~[F®)|°
Where the initial condition is |t (0)) =|+)

Rabi’s formula:
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Same resonance condition as classical mechanics:
Aw K wq
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NMR Time Constants

. Ty : spin-lattice relaxation
. Time until magnetization reaches thermal equilibrium value (z-direction)

d — (1
e e = (Y1) (g — 1)
n: surplus population at lower levels
Ng: humber at equilibrium

.T,: spin-spin relaxation
. due to magnetization parallel to rf field if the field is perfectly homogeneous

. T, : spin-spin relaxation combined with field inhomogeneities
. due to magnetization parallel to rf field and field inhomogeneities

. 1
- T3 =§9(V)

g(v): shape factor of the absorption line of energy from the magnetic field




Ircuit Resonances

Working Probe Resonances LC circuit resonances close-up
300 120
250 100
S 200 S 80
S 8
g 150 5 60
S ©
2 )
o Q
50 20
0 0
40 50 60 70 80 90 59.5 60.5 61.5 62.5 63.5 64.5
Frequency (MHz) Frequency (MHz)
Phase shift
80
60

Phase shift (degrees)
o

40 50 60 70 80 90
Frequency (MHz)



