The MuSun Experiment Electronics Energy Resolution

Rachel Osofsky Carleton College University of Washington INT REU

August 20, 2012

MuSun Introduction

Goal: Measure rate of muon capture on deuterium atom to 1.5% precision

- $\mu^- + d \rightarrow \nu + n + n$
- Expected rate: 400 s^{-1}

Measure strong interaction effect

op-fusion

Muon Decay

$$\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_\mu}$$

Decay rate (MuLan): $455170.2\pm0.42s^{-1}$

Lifetime Method

Experimental Setup

Cryogenic ionization chamber

Filled with ultra-pure Deuterium

Allows for 3D reconstruction of muon stops

Sensitive volume: 10cm x 12cm x 8cm

Applied field of 80 kV

• Causes ionization electrons to drift downwards towards anode

Pulse Generation

Energy is deposited onto TPC pads and is converted into a charge pulse

Each TPC pad is separately read out through a waveform digitizer channel

TPC

Electronics Chain

Preamplifier: charge sensitive configuration integrates the current to produce a voltage step proportional to the deposited charge Shaping amplifier converts preamp output signal to a form suitable for measurements

- Helps improve signal-to-noise ratio
- Shaping Time
 - Good energy resolution requires long pulse width
 - High counting rates require short pulse width

Experimental Setup

2 Preamp Boards: MuSun and Amptek

Energy Resolution Status

Previous energy resolution (Musun): 60 keV

Current energy resolution (MuSun): 12 keV

Current energy resolution (Amptek): 6.7 keV

$EnergyResolution(keV) = \frac{InputEnergy}{Baseline-Amplitude} * RMS$

Different Methods:

- Experimental Data (Load Capacitance and Diodes)
- LabVIEW Program
- Theoretical Analysis
- SPICE simulations

Calculating Input Energy

Send a pulse through a voltage divider and capacitor

- Calculate number of injected electrons
- Record output amplitude
- Replace capacitor

"Clean" Setup: Ideal Values

All components grounded together

Well shielded

Effect of Capacitive Loads

LabVIEW

Effect of Protection Diodes

Power Spectral Density

Noise Curves

Take PSD data using LabVIEW

Integrate PSD, multiply by transfer function and scaling factor

Equivalent Noise Charge vs shaping time

Solid Blue: Total, Dashed Blue: Amplifier Voltage Noise, Dashed Orange: Series Resistance , Dashed Green: Parallel Resistance

SPICE Simulations

Continue working on SPICE model

Improve analytical model

Make decision about preamp

Find a good way to mount preamp on TPC

Many thanks to:

Alejandro Garcia, Subhadeep Gupta, Janine Nemerever, Linda Vilett

Peter Kammel, Dave Hertzog

David Peterson, Tim Van Wechel

Michael Murray, Rachel Ryan, Frederik Wauters

The rest of the muon group!

Questions?