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Abstract

The structure of the feather barbs of the avian species Cotinga Cotinga was modeled as a cluster of
dielectric objects, and scattering theory was used to calculate scattering intensities of light incident
on the structure from various angles. The strongest scattering intensities, regardless of the incident
angle, were found in the 400-600 nm range, a finding consistent with experimental results. Evidence
for iridescence from directional lighting was also found, a finding consistent with experiments involving
quasi-ordered structures. The calculations revealed high intensities in a distinct range of the visible
spectrum, suggesting that the quasi-ordered structures of the barbs have an ordered enough structure to
produce wavelength specific color, however, the calculations also displayed a phi-dependence which must
be removed in order to obtain truly accurate results.

1 Introduction

There has recently been a renewed interest across
disciplines in the study of natural structural colors,
which arise from the interaction of light with nanos-
tructures. Developments such as photonic crystals,
which are made up of periodic nanostructures have
contributed to such interest.[2] Structural colors found
in nature can be divided into classes: iridescent and
non-iridescent. Iridescent colors will change with dif-
ferent viewing angles and are formed from an ordered,
periodic array of scatterers. However, while non-
iridescent colors–such as those found in the feathers of
many birds–can arise from pigments, they also have
been found to arise from quasi-ordered nanostruc-
tures in the barbs.[1] This paper calculates scattering
intensities for light interacting with a quasi-ordered
array of dielectric objects, specifically an array which
models a feather barb of the avian species Cotinga
Cotinga.

1.1 Quasi-Ordered Structures

The colors found in bird feathers are generated from
the scattering of light off of the structures of the
barbs, which consist of air vacuoles in the medullary
keratin. In feathers lacking iridescence, it was thought
that the air vacuoles always had to be randomly dis-
tributed so that the scattering of light depended solely
on the properties of individual vacuoles, rather than
from interference caused by order in the structure.
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However, Raman in 1935 challenged this idea by show-
ing that the feathers of Coracias Indica, a bird com-
mon in Southern India, showed striking variation in
color depending on the angle of incident light.[1] He
hypothesized that this iridescence was due to ordering
in structure barbs, though this idea was rejected when
scanning electron microscopy in the 1940s seemed to
reveal only random structures.

Raman’s hypothesis ended up being revived thirty
years later when Dyck managed to experimentally
falsify aspects of the random distribution model.[1]
He hypothesized that the color was constructive in-
terference from an ordered matrix of vacuoles, but it
was unknown if a weakly ordered, or “quasi-ordered”
structure would be ordered enough to produce wave-
length-specific-color.

Prum et. al. have provided evidence for order in the
structures using Fourier analysis of electron micro-
graphs of medullary keratin.[1] From their structural
analysis they have been able to successfully predict
the wavelengths of the optical reflection peak, show-
ing that the colors do originate from the order in the
structure.

1.2 Experimental Data

Prum et. al. have studied color production in the
barbs for six avian species, including Cotinga Cotinga
(C. Cotinga), which has barbs which consist of spher-
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ical air-cavities in a β-keratin background. For the
barbs, they measured the scattering intensity as a
function of wavelength, sample orientation, incident
light angle, and viewing angle. They found that for
natural daylight, the structure of C. Cotinga pro-
duced high intensity, regardless of incident angle, in
the 400-500nm range. Using directional light pro-
duced some iridescence, but natural daylight caused
non-iridescent scattering. This paper will model the
arrays of spherical cavities found in C. Cotinga as
arrays of dielectric non-overlapping spheres and cal-
culate their scattering intensities as a function of in-
cident angle, viewed angle, and wavelength.

2 Theory

2.1 T-Matrix Approach

The electromagnetic field formed from light incident
on a grouping of dielectric objects can be written us-
ing longitudinal, magnetic, and electric potentials ψLR,
ψMR , and ψER as:

E = ∇ψLR + LRψ
M
R −

i

k
∇× LRψ

E
R (1)

where k = ω/c and L = −i(r −R)×∇ is the orbital
angular momentum operator relative to R, the posi-
tion vector.[5]

For a system with no nearby external source, ψLR = 0.
The function ψER can be obtained using the following
identity[3]:

ψEα =
i

kεjµj

1

L2
α

(Lα ×∇) ·E (2)

For a grouping of dielectrics, the total electric field
E is equal to Eext + Eind, where Eext is the external
field and Eint is the field induced by the scattering
on the objects. Solving for the induced fields at each
position R yields the following net scattering ampli-
tude relation:

f (Ω) =
∑
α

e−ik
′·rα

∑
L

[
XL (Ω) ΨM,ind

α,L /k0 (3)

+ r̂×XL (Ω) ΨE,ind
α,L /k

]
(4)

≈
∑
α

e−ik
′·rα

∑
L

r̂×XL (Ω) ΨE,ind
α,L /k

where k = ω/c and XL = LYL (Ω) is the vector spher-
ical harmonic. The sum over L requires a sum over

the l-states, and thus the m-states for each l. The ap-
proximation in which the magnetic functions are ne-
glected is made in the electric dipole scattering limit.

The plane wave describing the external field is given
by Eext = ~εeik·r, where ~ε is the polarization of the
light (assumed to be normalized.)[4] If this expres-
sion is expanded in spherical plane waves and com-
bined with Equation 2, the coefficients of the electric
scalar functions are found to be:

ψE,extα,L =
4πeik·rα

l (l + 1)

[
X∗ (Ωi) ·

~ε× k

kε0µ0

]
(5)

When (1) is inserted into Maxwell’s equations, it is
found that the scalar functions must satisfy the fol-
lowing wave equation[3]:(

∇2 + k2j
)
ψ = 0 (6)

where kj = k
√
εjµj . This implies that the multipole

expansion of the electromagnetic field in this region
can be expressed as a sum of free spherical waves.[3]
The external field can be written in terms of spherical
harmonics and spherical Bessel functions.

For the system of dielectrics, the electromagnetic field
in the medium can be represented as a combination
of spherical Hankel functions: h+l for outgoing waves
and h−l for incoming waves. Because the sources of

Eind are induced by the external field in the dielectric
objects, Eind is expressed solely in terms of h+l , the
outgoing functions.

In the linear response approximation for single scat-
tering, the components of the scattered field (Ψss) are
proportional to those of the external field (Ψext), so
the following relationship holds:

Ψind ≈ Ψss = tΨext (7)

where the factor t is known as the scattering t-matrix.
By solving Maxwell’s equations in the presence of a
dielectric object, using an asymptotic condition that
forces ψL to equal the sum of the external and in-
duced fields in terms of the t scattering matrix, the
elements of such a matrix can be found for each L. De
Abajo et. al. used such a method to determine the t-
matrix for spherically symmetric objects, yielding[3]:

tEl =
−jl (ρ0) [ρ1jl (ρ1)]

′
+ ε [ρ0jl (ρ0)]

′
jl (ρ1)

h+l (ρ0) [ρ1jl (ρ1)]
′ − ε

[
ρ0h

+
l (ρ0)

]′
jl (ρ1)

(8)

where ρ0 = ka and ρ1 = ka
√
ε, and a is the radius of

the spheres. The scattering amplitude from a coher-
ent light source incident on a group of N dielectrics
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can now be expressed as
∑N
α=1 fα, where fα is given

by:

(9)

fα (θ, φ, θi, φi) = 4πei(k−k
′)·rα

∑∞
l=1

∑l
m=−l

(
r̂×Xl,m(θ,φ)

l(l+1)

) [
tα,lX

∗
l,m (θi, φi) · ~ε×k

k2ε0µ0

]
where Xl,m is given in spherical polar coordinates
(Y ml is a spherical harmonic) by[7]:

Xl,m ≡ θ̂

{
−mY ml

[l (l + 1)]
1
2 sinθ

}
(10)

+φ̂

{
−i

[l (l + 1)]
1
2

∂Y ml
∂θ

}

The total scattering intensity is then obtained from
f · f∗, where f =

∑N
α=1, and fα is given by (9). Note

however that this result assumes the incident light is
coherent.

2.2 Nearest Neighbor Approach

An alternative way of arranging the terms in an equa-
tion for the scalar scattering intensity (f · f∗) is given
by the equation below:

f · f∗ =

N∑
α=1

|fα|2 +

N2−N∑
α6=β

fα · f∗β (11)

where fi is given by (9).

In a randomly distributed assortment of scatterers
it can be shown that the terms where α 6= β give a
negligible contribution to the sum. [4] However, for
a large collection of scatterers in some sort of regular
distribution the contributions of the terms mixing fα
and fβ , where rα and rβ are sufficiently close, become
important. Thus the equation becomes:

f · f∗ =

N∑
α=1

|fα|2 +
∑

αβ=nn

fα · f∗β (12)

where “nn” means the near neighbors for which light
is coherent. The coherence length depends on the
source, and for sunlight is about 600 nm[8]. The first
sum in this equation will yield the same intensities as
those for a single sphere multiplied by N, and will be
referred to as the incoherent term, whereas the second
sum will be referred to as the coherent term, as it
contains the structural information of the particular
system and creates its distinctive scattering pattern.

2.3 Multiple Scattering

The singly scattered field generated by a dielectric
can, in general, be scattered additional times by all
other dielectrics in the system. The equation for the
induced field thus becomes

Ψind
α = Ψss

α + tα
∑
α 6=β

GαβΨ′indβ (13)

where G is Green’s function.

The following recursion relation can be used to solve
for the system in question

Ψn = Ψ0 + t
∑

GΨn−1, (n > 0) (14)

and Green’s function can be approximated using the
Rehr-Albers separable approximation.[6]

3 Method

3.1 Structure

To approximate the structure factor for found in the
paper by Prum et. al.[1], Vila generated Cartesian
coordinates for 10,000 spheres distributed in an ap-
proximately 5418nm x 5418nm x 5418nm cube based
on the hard sphere model. The figure below com-
pares the structure factor for the generated structure
to the one found experimentally by Prum et. al. for
C. Cotinga.

Figure 1: The black line is the factor for the spheres
generated by Vila, and the red is for the experiment.[1]

3.2 Scattering Calculation

A program was written in C to read in the coordinates
for the 10,000 spheres, and then calculate the scatter-
ing intensities for both the complete single-scattering
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sum of all 10,000 spheres, and for the nearest neigbor
approach. The spheres were given a radius of 120 nm,
which is the spherical radius for C. Cotinga, and the
dielectric constant assigned to the structure was 1.5.
A plot of the t-matrix was made in Mathematica for
increasing values of ` (Figure 2), and it was found that
after the fourth term, the t-matrix dies off sufficiently
to make any higher ` contributions on the scattering
sum too minicule to consider. Thus the program went
up to `=4 for the calculations. For the nearest neigh-
bor approach, only dielectrics located within three
dielectric diameter lengths of each other were used in
the calculation.
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Figure 2: The t-matrix as a function of wavelength for
values of ` ranging from 1-4. As ` increases, the t-matrix
curves die off.

4 Results

4.1 Intensities from Entire Scattering
Function

Figures 3 and 4 show the scattering in terms of scat-
tered angle and wavelength of scattered directional
light for one of the structures generated by Vila. Fig-
ure 3 is for light incident at an angle of π/4. It has
strong intensity for light in the range of 400-500 nm,
results consistent with those of Noh et. al.[1] How-
ever, there also appear to be a lot “speckles” or noise
surrounding the major peak area. These are in differ-
ent areas for each different incident angle and suggest
some iridescence.

Figure 4 gives the scattering intensities for light inci-
dent at an angle of π/2. It also has a strong intensity
for light in the range of 400-500 nm, and it can be seen
that the “speckles” are still there, but positioned dif-
ferently.
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Figure 3: The wavelength ranges from 300-800nm on the
horizontal axis, and the theta from 0 to π/4 on the vertical
axis. Calculations were made in increments of 20 nm and
π/64 radians.
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Figure 4: The wavelength ranges from 300-800nm on the
horizontal axis, and the theta from 0 to π/4 on the vertical
axis. Calculations were made in increments of 20 nm and
π/64 radians.
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Figure 5: The wavelength ranges from 300-800nm on the
horizontal axis, and the theta from 0 to π/4 on the vertical
axis. Calculations were made in increments of 20 nm and
π/64 radians.

Though experimentally the barbs show iridescence
from directional lighting, the iridescence suggested by
the noise in these images is too strong. It is doubtful
that the interactions between the farthest structures
in the cell actually contribute since they exceed the
coherence length for visible light, but they are being
used in this calculation.

4.2 Intensities from Near Neighbor Ap-
proach

Figures 5 and 6 give scattering results using the ap-
proach of (12) with three nearest neighbors. The co-
herent term was calulated only from dielectrics which
were three diameter lengths away from each other. In
both figures it is evident that the intensity the inten-
sity peaks for the wavelength range of 400-600 nm,
but there are no “speckles,” and there is more conti-
nuity in the images.

Figure 5 gives the backscattered intensities assuming
an incident light angle of π/2 in the theta direction,
as well as incident and scattered angle φ = 0. The
vertical axis gives the angle between the incident and
backscattered light, which is being varied in the theta
direction. The highest intensity is in the higher angle
and 400-500 nm range, a finding inconsistent with ex-
periment, which show a peak in the low angle range.

Figure 6 gives the backscattered intensities assuming
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Figure 6: The wavelength ranges from 300-800nm on the
horizontal axis, and the theta from 0 to π/4 on the vertical
axis. Calculations were made in increments of 20 nm and
π/64 radians.

an incident light angle of π/2 in the theta direction,
as well as incident φ = 0. The vertical axis gives the
angle between the incident and backscattered light,
which is being varied in the phi direction. The high-
est intensity is in the 500-600 nm range, a finding
inconsistent with experiment, which show a peak in
the 500-600 nm range.

5 Conclusions

Both attempts to calculate intensity resulted in plots
with the strongest intensity in the 400-600 nm range,
results consistent with the experimental data of Noh,
et. al. The calculation involving the interactions of
all the dielectrics in the region had some noise, sug-
gesting iridescence. The calculation involving only in-
teractions between dielectrics a few wavelengths apart
yielded intensity only in the 400-600 nm region, with-
out the additional noise. This is consistent with ex-
periment, however, the phi-dependence is inconsis-
tent and stems from assuming a polarization in light.
This should be corrected by averaging over all po-
larizations. All calculations revealed high intensity
scattering in distinct visible wavelength ranges, giv-
ing a theoretical basis for visible wavelength specific
scattering in quasi-ordered structures.
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6 Future Work

There are many additional considerations that can
be taken into account for future work on this project.
The phi-dependence must me removed by averaging
over all polarizations. The code generated for the re-
sults in this paper only uses the single-scattering for-
mula, and multiple-scattering may be important for
modeling this system accurately. Also, the proteins
being modeled are not dielectric spheres, but rather
spherical cavities in a dielectric material, this would
suggest a need to modify the t-matrix.

7 Acknowledgements

I would like to thank Fernando D. Vila and John J.
Rehr for their guidance in this project–for directing
me to helpful papers and other materials, and for de-
bugging aid/advice. In addition, Vila generated the
structures to match those of C. Cotinga. Takimoto
and Low developed much of the theory used in this
project. This project was funded by the National
Science Foundation: award number 1062795. Finally,
I would like to thank fellow REU students Arman,
Charlie, Gina, Megan, and Micah for their support
this summer.

References

[1] Noh, Heeso; Liew, Seng Fatt; Saranathan, Vin-
odkumar; Mochrie, Simon G. J.; Prum, Richard
O.; Dufresne, Eric R.; and Cao, Hui. How
Noniridescent Colors Are Generated by Quasi-
ordered Structures of Bird Feathers. Advanced
Materials, 1, XX, (2010).

[2] Noh, Heeso; Liew, Seng Fatt; Saranathan, Vin-
odkumar; Mochrie, Simon G. J.; Prum, Richard
O.; Dufresne, Eric R.; and Cao, Hui. Double scat-
tering of light from Biophotonic Nanostructures
with short-range order. (2010). Optics Express.
Vol. 18, No. 11, 11948.

[3] De Abajo, F. J. Garcia, Multiple Scattering of
Radiation in Clusters of Dielectrics. Physical Re-
view B. Vol. 60, No. 8 (1999).

[4] Jackson, John David. Classical Electrodynamics,
Third Edition. John Wiley and Sons, Inc. 1999.

[5] Takimoto, Yoshi and Rehr, John J. Multiple
Scattering of Light from Dielectric Spheres. Uni-
versity of Washington. (2004).

[6] Rehr, John J. and Albers, R. C. Theoretical
Approaches to X-Ray Absorption Fine Struc-
ture. Review of Modern Physics. Vol. 73, No. 3,
(2000).

[7] Hill, E. L., The Theory of Vector Spherical Har-
monics, University of Minnesota, 1953.

[8] Engineering Physics, Vol. 19, 245 (98).

6


	Introduction
	Quasi-Ordered Structures
	Experimental Data

	Theory
	T-Matrix Approach
	Nearest Neighbor Approach
	Multiple Scattering

	Method
	Structure
	Scattering Calculation

	Results
	Intensities from Entire Scattering Function
	Intensities from Near Neighbor Approach

	Conclusions
	Future Work
	Acknowledgements

