Quantum Gases

Subhadeep Gupta

UW REU Seminar, 11 July 2011

Ultracold Atoms, Mixtures, and Molecules

Subhadeep Gupta

UW REU Seminar, 11 July 2011

Ultracold Atoms

High sensitivity (large signal to noise, long interrogation times in a well known atomic system) Precision measurements (fund const, fund sym, clocks) Sensing (accelerations, gravity gradients)

Many-body aspects Quantum Fluids Condensed Matter Physics Nuclear Physics

Formation of a Bose-Einstein condensate (BEC) (1995)

Quantum Engineering (Potentials and Interactions) Quantum Information Science Quantum Simulation Ultracold Molecules (through mixtures)

Ultracold Atoms and Molecules at UW

A dual-species experiment (Li-Yb) for making and studying ultracold polar molecules and for probing quantum mixtures

Development of precision BEC interferometry (Yb) for fine structure constant α and test of QED

Quantum Degeneracy in a gas of atoms

Bose-Einstein Condensation (BEC)

Quantum Phase Space Density

 $n\lambda_{\rm dB}^3 \sim 1$

 $n\lambda_{\rm dB}^3 >> 1$

Bose-Einstein condensate

atoms flit around randomly

atoms march in lockstep

divergent incoherent many small waves many modes diffraction limited (directional) coherent one big wave single mode (monochromatic)

Ordinary light

Laser light

divergent incoherent many small waves many modes diffraction limited (directional) coherent one big wave single mode (monochromatic)

ABSOLUTE TEMPERATURE (log Kelvin scale)

Laser Cooling ???

Laser Cooling

Laser Cooling !!!

100µK Magneto-Optic Trap (MOT)

But the room is at 300K (!)

Evaporative Cooling in a Conservative Trap

Evaporative Cooling in a Conservative Trap

Depth ~ I/ Δ ; Heating Rate ~ I/ Δ^2

(Formation of a Yb BEC in an optical trap, UW Seattle 2011)

Landmark achievements in ultracold atomic physics

(JILA, MIT, Rice....)

Bose-Einstein condensation

Superfluidity / observation and study of a vortex lattice (Dalibard, Ketterle, Cornell) Superfluid to Mott-insulator quantum phase transition (Hansch)

50 nK

200 nK

400 nK

Different Quantum Matters

Different Quantum Matters

Fermions are much harder to cool because identical (in all respects) fermions will not interact s-wave (a=0). Need another spin state or another species of atom.

Landmark achievements in ultracold atomic physics

Molecular Bose-Einstein condensate

(Jin, Hulet, Thomas, Ketterle, Grimm)

Superfluidity of Fermi pairs

Ultracold Polar Molecules

Realization of new quantum gases based on dipole-dipole interactions (1/r³ vs 1/r⁶ "contact" potential)

Quantum Computing and Simulation

Tests of fundamental symmetries

Spectroscopies for clocks, time variations of fundamental constants

Cold and ultracold controlled Chemistry

Polar (diatomic) Molecules from Ultracold Atoms

Polar (diatomic) Molecules from Ultracold Atoms

New degrees of freedom bring with them scientific advantages New degrees of freedom bring with them technical issues (Hard to cool!)

Internuclear Distance (R)

Unequal sharing of electrons Polarizable at relatively low field

Ultracold Atom Menu

-	1.00		1.5		250	5	1000	5	070	1070	010570		1000	105	1000	1070	10	i
nyarogen 4																		nellum 2
1.0115																		не
1.0079																		4.0026
lithium 2	beryllium A												boron	carbon	nitrogen	oxygen	fluorine	neon 10
	17***D												11P	den	15 H	den o		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												15	6		()	0.00	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium	magnesium												atuminium	silicon	phosphorus	sulfur	chlorine	argon
	12												1.5	14	1.0	10	17	10
Na	Ma												Al		an P		C	Ar
22.990	24.305												26,982	28.086	30.974	32.065	35.453	39.948
potassium	calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc		V	Cr	Mn	Fe	Co	N	CL	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51,996	54.938	55.845	58,933	58,693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium	strontium		yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	lodine	xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rh	Sr		V	d'r	NB	Mo	P	Ru	Rh	DA	An	Cr	10	Sn	Sh	Π _Φ		Xe
85468	87.62		88. Q06	(21.224	8 18 84P	05.04	1081	101.07	102.01	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium	barium	0.0999331.76.24	lutetium	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Ce	Ba	×	l III	14	1.23	M	Ra	()e	1.0	Dŧ	An	100	11	Dh	R	Des	点十	Rn
	127.22		Ban %-0 474.07	470.40	100.05	W W 100.04	402.04	400.00	400.00	105.00	4.02.07		E E	II I№#	Band ^a H	10001	104.00	10000
francium	radium		lawrencium	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	ununnilium	unununium	ununbium	204.38	207.2 ununquadium	200.96	[209]	[210]	[[ZZZ]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	1 10	D4		Gera	Rh	- c	R/14	111100		I In the						
	Ita	/\ /\	Hans II	I & I	Bar Bar		1.71 I	110	IWIL		PREF			AND AND AND				
223	226		262	261	262	266	[264]	[269]	268	[271]	272	277		220				

*Lanthanide series

* * Actinide series

	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Э	La	Ce	Pr	Nd	Ρm	Sm		Gd	Шb	Dy	HO	Er	"I'm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	califernium'	einsteinium	fermium	mendelevium	nobelium
	89	90	91	92	93	94	95	96	97	615	99	100	101	102
	Ac		Pa	U	Νp	Pu	Am	Cm	Bk			- 14	Md	No
	[227]	232.04	231.04	238.03	12371	[244]	[243]	[247]	12471	12511	12521	[257]	[258]	[259]

Very different mass, very different electronic structure \rightarrow strong dipole moment

Selected Molecular Constituents

Studies of interacting quantum mixtures (different statistics, masses)

Microscopic probes of superfluids

Selected Molecular Constituents

New Quantum Fluid – Dipolar and paramagnetic

Paramagnetic ground state, heavy component \rightarrow candidate for electron EDM search

Quantum computing candidate

Dual Species Apparatus

Dual Species Apparatus

Two-Species MOT

Sequential Loading

The 2 MOTs are optimized at different parameters of magnetic field gradient and also exhibit inelastic interactions

Optical Dipole Trap

Crossed beam dipole trap 1064nm, up to 25 Watts

Optical Dipole Trap

Crossed beam dipole trap 1064nm, up to 25 Watts

Ground State behavior of Li-Yb mixture

It's stable!

Extract $|a| = (13 \pm 3) a_0 (\sim 0.7 \text{ nm})$

Sympathetic Cooling to below T_F

Ivanov et al, PRL 106, 153201 (2011)

Simultaneous Quantum Degeneracy in alkali + spin-zero system

Hansen et al, PRA (Rapid Comm), in press

Towards Interacting Mixtures and Molecules

Search for Magnetic Feshbach Resonances

Precision Measurement of Fine Structure Constant $\boldsymbol{\alpha}$

(2008)

QED-free Atomic Physics Route to $\boldsymbol{\alpha}$

0.008 ppb: hydrogen spectroscopy, (Udem et al.,1997; Schwob et al.,1999)

0.7 ppb: penning trap mass spectr. (Beier et al., 2002)

BEC is a bright coherent source for atom interferometry

Contrast Interferometry with a BEC

The phase of the matter wave grating is encoded in oscillating contrast. $S(T,t) = C(T,t) \sin^{2} \left(\frac{\Phi_{1}(t) + \Phi_{3}(t)}{2} - \Phi_{2}(t) \right) = C(T,t) \sin^{2} \left(8\omega_{\text{rec}}T + 4\omega_{\text{rec}}\Delta t \right)$ The phase of the contrast signal for various T gives ω_{rec} .

Contrast Interferometry with a BEC

Sub-ppb precision in few hours of data

Use of a Yb BEC – no B field sensitivity and multiple isotopes for systematic checks Atom laser has interactions – careful study of this systematic effect

UW Ultracold Atoms Team

Undergrad Students: Ben Schwyn, Charlie Fieseler Grad Students: Anders Hansen, Alex Khramov, Will Dowd, Alan Jamison, Ben Plotkin-Swing

\$\$\$ - NSF, Sloan Foundation, UW RRF, NIST