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I. INTRODUCTION

Form factors for particles can be determined both theoretically and experimentally. These
form factors can be used to compute charge and magnetization densities. A recent experiment
using muon hydrogen suggests that the proton may have a radius 4% smaller than originally
thought [1]. The results, which contradict both previous experiments and existing models,
motivate our study of the relationship between form factors and charge densities.

II. PRELIMINARY THEORY

Intuitively, we expect particles to be localized. That is, we expect densities associated
with the particle to be well approximated by functions that are zero outside some maximum
radius. This assumption, called the finite radius approximation (FRA), will greatly simplify
the relationship between form factors and their associated densities.

Let ρ(b) be a two-dimensional density function (we will later take this to be charge or
magnetization density) and let F (Q2) be the associated form factor. We assume that F and
ρ have radial symmetry and that ρ(b) = 0 for b ≥ R. Since ρ is the fourier transform of F ,
this means F is band-limited. We proceed in the spirit of the Kramer sampling theorem. ρ

can be expanded as

ρ(b) =
∞

∑

n=1

cnJ0(Xn
b

R
) (1)

where Xn is the n-th zero of J0 and cn is given by the formula

cn =
2

R2J1(Xn)2

∫ R

0

bρ(b)J0(Xn
b

R
) db. (2)

Since F is the inverse transform of ρ, we can write
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F (Q2) = 2π

∫

∞

0

bρ(b)J0(
bQ

~
) db

= 2π

∫ R

0

bρ(b)J0(
bQ

~
) db. (3)

Using this formula, we get

cn =
2

R2J1(Xn)2

∫ R

0

bρ(b)J0(Xn
b

R
) db

=
1

2π

2

R2J1(Xn)2
F ((Xn

~

R
)2). (4)

This yields the following expression for ρ(b):

ρ(b) =
1

πR2

∞
∑

n=1

J1(Xn)−2F ((Xn
~

R
)2)J0(Xn

b

R
). (5)

We now perform some preliminary analysis of this new expression. For x ≫ 1, we can
approximate J0(x) by

J0(x) ≈

√

2

πx
cos(x −

π

4
)

so we can approximate Xn by (n + 3

4
)π [2]. Then

J1(x) = −J ′

0
(x)

≈

√

2

πx
sin(x −

π

4
) +

1

2x

√

2

πx
cos(x −

π

4
)

≈

√

2

πx
sin(x −

π

4
) +

1

2x
J0(x)

so

J1(Xn) ≈

√

2

πXn

sin(Xn −
π

4
)

≈

√

2

π2(n + 3

4
)
sin((n +

3

4
)π −

π

4
)

= (−1)n21/2π−1((n +
3

4
))−1/2. (6)

It follows that for large n, the terms in the series Eq. (5) for ρ(b) are of the form:
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π

2R2
(n +

3

4
)F ((Xn

~

R
)2)J0(Xn

b

R
).

So for the series to converge everywhere, namely at b=0, we need F to fall faster than Q−2for
large Q.

The function ρ(b) can be approximated by using a finite number of terms in the series
Eq. (5). Because (Xn

~

R
)2 serves as the Q2 in the argument of F , cutting off the series at N

terms is equivalent to taking F (Q2) = 0 for Q2 > (XN
~

R
)2.

If the assumption that ρ(b) = 0 for b ≥ R holds for a given value of R, then it also holds
for larger values of R. We can see from Eq. (5) that increasing R increases the frequency with
which F (Q2) is sampled and therefore decreases the range that is sampled. As a consequence,
an increase in R demands an increase in the number of terms in the approximation for ρ.

A quick result following from the fact that ρ is the Fourier transform of F is that the
mean-square-radius 〈b2〉 is given by

〈b2〉 = −4~
2

dF

dQ2

∣

∣

∣

∣

Q2=0

.

In this paper, we will use R = 5
√

|〈b2〉| as a rule of thumb. Numerical studies of the form
factors considered in this paper have shown that this value of R is sufficiently large and that
perturbations to this value lead to the same density functions. We expect this estimate to
be useful for charged particles, but in the case of neutral particles the charge distribution
may change sign multiple times, giving cancellation that leads to a |〈b2〉| too small for our
approximation.

We will now derive an expression that allows us to analyze the effectiveness of FRA. Since
ρ(b) is the Fourier transform of F , we can substitute

ρ(b) =
1

2π~2

∫

∞

0

qF (q)J0(
qb

~
) dq (7)

into Eq. (2) to get

cn =
1

π~2R2J1(Xn)2

∫ R

0

∫

∞

0

qbF (q)J0(
qb

~
)J0(Xn

b

R
) dq db

Integration over b can be done using a standard identity to yield

cn =
Xn

π~2R2J1(Xn)

∫

∞

0

qF (q2)J0(
qR
~

)

(Xn

R
)2 − ( q

~
)2

dq (8)

We will compare this expression for cn to that of Eq. (4) to determine how well FRA works.
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III. EXAMPLES

To demonstrate our method and explore its limitations, we now analyze two models of the
form factor. For the first model, let the form factor be given by

F (Q2) =
1

1 + Q2

Ω2

where Ω = 1 GeV. Then the associated charge density is:

ρ(b) =
1

2π~2

∫

∞

0

q

1 + q2

Ω2

J0(
qb

~
) dq.

We can compare to ρ to the approximation

ρ(b) ≈

N
∑

n=1

cnJ0(Xn
b

R
)

The exact ρ and approximations are plotted in Fig. 1.
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FIG. 1: Plot of ρ (solid), 10 term approximation (long dash) and 20 term approximation (short

dash).

As we can see, our approximation is different from the exact result. The issue is that F

falls as Q−2 for large Q and so the series does not converge everywhere. In particular, the
exact form is singular at the origin, but a finite sum of terms cannot recover that behavior.
However, away from the origin the series provides a working approximation of ρ. In order
to determine the effectiveness of FRA, we compare the approximation coefficients Eq. (4)
to those given by Eq. (8), which was derived from the orthogonality relation of J0. A plot
of the coefficients is given in Fig. 2. The graph shows that despite the singularity, the two
expressions are almost identical

We now consider the dipole form factor given by
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FIG. 2: Coefficients cn for ρ derived using Eq. (4) and Eq. (8). The two expressions give the same

values.

GD(Q2) =
1

(1 + Q2

Λ2 )2
(9)

where Λ = 0.71 GeV. The dipole charge density is

ρd(b) =
1

2π~2

∫

∞

0

q

(1 + q2

Λ2 )2
J0(

qb

~
) dq.

We plot ρd and its approximations below.
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FIG. 3: Plot of ρ (solid), 5 term approximation (long dash) and 10 term approximation (short dash).

We can see how the approximations converge to the exact ρd. As before, we compare the
coefficients given by Eq. (4) to those given by Eq. (8). They are plotted in Fig. 4

Again, the two expressions yield almost identical values. Since Gd falls faster than F , the
coefficients fall faster as well. As a result, we need fewer terms to approximate ρd than we
need for ρ.
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FIG. 4: Coefficients cn for ρd derived using Eq. (4) and Eq. (8). The two expressions give the same

values.

IV. RESULTS AND DISCUSSION
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FIG. 5: The electromagnetic form factors GE(Q2) (solid) and GM (Q2) (dashed).

Light front theory allows us to recover the transverse charge density and ρch as the two
dimensional Fourier transform of F1. Defining ρ2 to be the two dimensional Fourier transform
of F2, we can obtain the magnetization density ρm using ρm(b) = −b d

db
ρ2(b) [3]. F1 and F2

are given in terms of the form factors GE and GM by

F1(Q
2) =

GE + τGM

1 + τ
(10)

F2(Q
2) =

GM − GE

1 + τ
(11)

where
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τ(Q2) =
Q2

4Mp
. (12)

The data for the proton form factors GE and GM have been fit to the forms

GE(Q2) =
1 + τ(p6 + τ(p10 + τp14))

1 + τ(p2 + τ(p4 + τ(p8 + τ(p12 + τp16))))
(13)

GM(Q2) =
1 + τ (q6 + τ(q10 + τq14))

1 + τ(q2 + τ(q4 + τ(q8 + τ (q12 + τq16))))
(14)

where the constants p2, ..p16, q2, ..., q16 are given in the following table [4].

i pi qi

2 1.104 × 101 3.517 × 101

4 1.385 × 101 3.530 × 101

6 −2.947 × 10−2 2.318 × 101

8 2.430 × 101 1.958 × 103

10 7.347 × 10−1 9.994 × 101

12 2.920 × 101 7.947 × 102

14 3.087 × 10−1 −1.952 × 101

16 1.381 × 101 3.099 × 103

Substituting Eq. (12), Eq. (13) and Eq. (14) into Eq. (10) and Eq. (11), we get F1 and F2 as
functions of Q2, as plotted in Fig. 6.
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FIG. 6: The electromagnetic form factors F1(Q
2) (solid) and F2(Q

2) (dashed).

We now proceed according to FRA as outlined above. ρch and ρ2 can be approximated by:

ρch =
1

πR2
1

N
∑

n=1

J1(Xn)−2F1((Xn
~

R1

)2)J0(Xn
b

R1

) (15)
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ρ2 =
1

πR2
2

N
∑

n=1

J1(Xn)−2F2((Xn
~

R2

)2)J0(Xn
b

R2

). (16)

Plots of these approximations are given in Fig. 7.
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FIG. 7: Plots of approximations to ρch and ρ2 with 10 terms (long dash), 20 terms (short dash) and

50 terms (solid). The approximations converge as the number of terms increases.

As before, we compare the coefficients given by Eq. (4) to that given by Eq. (8). Plots of the
coefficients are given in Fig. 8 and Fig. 9.

The errors in GE and GM were supplied by Arrington [4]. They are graphed in Fig. 10.
We can derive the error in F1 and F2 by using Eq. (10) and Eq. (11):

(dF1)
2 = (

1

1 + τ
)2(dGE)2 + (

τ

1 + τ
)2(dGM)2 (17)

(dF2)
2 = (

1

1 + τ
)2(dGE)2 + (

1

1 + τ
)2(dGM)2 (18)

We have assumed the errors in GE , GM are uncorrelated, and therefore add in quadrature.
The data used to obtain the fits Eq. (13) and Eq. (14) have a maximum Q2 of 30 GeV2. By
reasoning explained in [5], F1 falls as Q−4 for large Q, so we extrapolate dF1 for Q2 > 30
GeV2 by assuming dF1 is continuous as Q2 = 30 GeV2 and that it also falls as Q−4. Similary,



9

10 20 30 40
n0.00

0.05

0.10

0.15

0.20

cn

FIG. 8: Coefficients cn for the electric charge density ρch derived using Eq. (4) and Eq. (8). The two

expressions give the same values.
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FIG. 9: Coefficients cn for the magnetization density ρ2 derived using Eq. (4) and Eq. (8). The two

expressions give the same values.

experiment [6] and theory [7] suggest that F2 falls as F1

Q
, so we extend dF2 to the region with

Q2 > 30 GeV2 by taking it to be continuous and assuming it falls as Q−5. The functions dF1

and dF2 are plotted in Fig. 11. Eq. (15) and Eq. (16) allow us to derive an estimate for the
error in ρch and ρ2 based on dF1 and dF2. Assuming the errors add constructively, we get

dρch(b) =

∞
∑

n=1

∣

∣

∣

∣

∂ρch(b)

∂F1

∣

∣

∣

∣

dF1((Xn
~

R1

)2)

=
1

πR2
1

∞
∑

n=1

|J1(Xn)−2J0(Xn
b

R1

)|dF1((Xn
~

R1

)2) (19)
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FIG. 10: Log plots of dGE(Q2) and dGM (Q2).

dρ2(b) =
∞

∑

n=1

∣

∣

∣

∣

∂ρ2(b)

∂F2

∣

∣

∣

∣

dF2((Xn
~

R2

)2)

=
1

πR2
2

∞
∑

n=1

|J1(Xn)
−2J0(Xn

b

R2

)|dF2((Xn
~

R2

)2). (20)

The first 50 terms of Eq. (19) and Eq. (20) are plotted in Fig. 13.
The functions F1 and F2 fall faster than Q−4 for large Q. The coefficients in the expansions

Eq. (15) and Eq. (16) for ρch and ρ2 must fall faster than n−3 for large n by the analysis in
section II. Thus, the coefficients for large n must be small (as demonstrated in Fig. 8 and
Fig. 9). The sums from n = 51 to n = 1000 in the expansions for ρch and ρ2 are plotted in
Fig. 12. These remainders are small compared to the 50 term approximations in Fig. 7. We
are therefore justified in approximating ρch and ρ2 by the first 50 terms in their expansions.
Similarly, since dF1 falls as Q−4 and dF2 falls even faster, dρch and dρ2 can be approximated
by the first 50 terms in their expansions. Again, the remainders from n = 51 to n = 1000
(plotted in Fig. 14) are small, so our approximation is valid.

Using ρm(b) = −b d
db

ρ2(b), we get

ρm =
1

πR2
1

N
∑

n=1

J1(Xn)−2
Xn

R2

F2((Xn
~

R1

)2)J1(Xn
b

R2

) (21)

and by the same reasoning as before, the error formula
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FIG. 11: Log plots of dF1(Q
2) and dF2(Q

2).

dρm(b) =
∞

∑

n=1

∣

∣

∣

∣

∂ρm(b)

∂F2

∣

∣

∣

∣

dF2((Xn
~

R2

)2)

=
1

πR2
2

∞
∑

n=1

|J1(Xn)−2
Xn

R2

J1(Xn
b

R2

)|dF2((Xn
~

R2

)2). (22)

We again approximate these two functions by the first first 50 terms of their respective
series.

We now have working expressions for the charge density ρch, the density ρ2, the magneti-
zation density ρm and their respective error functions dρch, dρ2 and dρm. All three densities
are plotted with their error bands in Fig. 15.

V. SUMMARY

We can see from Fig. 15 that the errors associated with the charge density is very small.
This suggests that the transverse charge densities for the proton is almost completely de-
termined. We can also see that near b = 0 the magnetization density is well known. The
uncertainty is greater for larger b, but the magnetization density is constrained by the fact
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FIG. 12: Terms 51 to 1000 in Eq. (19) for ρch and Eq. (20) for ρ2.

that the total magnetization is fixed. Thus, we also have a reasonable idea for the magnetiza-
tio density. However, this rests on the assumption that the form factors F1 and F2 are small
for values of Q outside experimental range.
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FIG. 13: The first 50 terms of dρch and dρ2.
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FIG. 14: Terms 51 to 1000 in Eq. (19) for dρch and Eq. (20) for dρ2.
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FIG. 15: The functions ρch, ρ2 and ρm with error bands dρch, dρ2 and dρm, all approximated to 50

terms


