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Physical Adsorption Basics

3D gas - substrate interactions
Van Der Waals dispersion energy always attractive
Repulsive forces at short distances due to wave function
overlap

Lennard-Jones potential:

V (r) = −4ε
[(
σ
r

)6 − (σr )12]
2D behavior (monolayers, phase transitions)
Measurement methods

Calorimetry
Diffraction (neutrons, electrons, X-rays, etc.)
*Volumetric adsorption isotherms*

Suspended single carbon nanotube resonator
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How to Play a Nanoguitar

Oscillating AC voltage ⇒ sinusoidal electric field ⇒
Driven “harmonic” oscillator

Lock-in detection using δf mixing current

Mechanical resonance peaks of the nanotube appear as
peaks in the locked in signal
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Detecting coverage of adsorbates

Assumptions:

f ∝ ρ−1/2

Shifts in resonance frequency are due to changing inertial
properties of resonator, not elastic properties.

Define ρ = mcarbonNcarbon, ∆ρ = madsorbateNadsorbate,
and f0 = lim∆ρ→0 fres

fres
f0

=
√

1 + ∆ρ
ρ

φ = Nads
Ncarbon

= mcarbon
mads

[(
f0
fres

)2
− 1

]
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Classical 2D Phase Behavior

Behave as a van der Waals substance, i.e. same phase
diagram in 2D

Inert + high polarizability = ideal candidate (noble gases)
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Classical vs. “Quantum” adsorbates (specifically
4He)

Classical adsorbates approximated well with the
Lennard-Jones potential ⇒ easily calculable binding
energies

Van der Waals interaction for He << classical 2D gases:

αHe = 0.204 Å3 vs. αXe = 4.01 Å3, Udipole ∝ αE2

For He, wave function overlap may not be so well
approximated by the r−12 in L-J

Data from adsorption on bundles suggests 4He may not
adsorb well to a single nanotube; most adsorption found in
interstitial channels (Wilson, Vilches, Physica B 329, 278
(2003))
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4K Isotherm
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He Isotherms
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Isosteric Heat

For a system in an equilibrium state of phase coexistence,
integrated Clausius-Clapeyron equation gives (to first
approximation) P = P0e

−L/kT

Consider 3D gas and 2D adsorbed phase as a two phase
coexistence

Isosteric heat of adsorption:

qst = −k ∂ lnP
∂(1/T )

∣∣
φ

In the lnP - 1/T plane, curves of constant φ are linear
(experiment)

limφ→0 qst = Eb + T∆S(≈ kT )− Ezp
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Measured Isosteric Heat
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Measured qst vs. “Predicted”

qexpst = 42.9 K

Using numerically integrated Lennard-Jones potential over
cylinder (nanotube), Eb = 142 K for 4He on a 1 nm
nanotube

Zero point energy of He/graphite ≈ 44 K

⇒ qthst ≈ (142 + 5− 44) K ≈ 103 K

Evidently true quantum calculation needed to resolve
discrepancy:

Wave function overlap may push r0 further from tube ⇒
Eb and Ezp decrease
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Summary and Acknowledgments

Preliminary adsorption data collected with 4He on a single
nanotube

Isosteric heat (on nanotube) inconsistent with models
which work for less quantum gases

To try: Adsorb 4He on different nanotube, find qst
dependence on diameter

Thank You
Professor David Cobden
Professor Oscar Vilches

Zenghui Wang
Hao-Chun Lee

Erik Fredrickson
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