Adsorption and Phase Properties of Inert Gases on Suspended Single Carbon Nanotubes

Ricky Roy

Adsorptior Basics

Nanoguitar Basics

Classical 2D Adsorbates

⁴He Adsorption

Isosteric Heat

Comparison with Theory and Previous Measurements

Summary

Adsorption and Phase Properties of Inert Gases on Suspended Single Carbon Nanotubes

Ricky Roy

August 18, 2010

イロト 不得 トイヨト イヨト

Physical Adsorption Basics

Adsorption and Phase Properties of Inert Gases on Suspended Single Carbon Nanotubes

Ricky Roy

Adsorption Basics

Nanoguitar Basics

Classical 2D Adsorbates

⁴He Adsorption

lsosteric Heat

Comparison with Theory and Previous Measurements

Summary

3D gas - substrate interactions

- Van Der Waals dispersion energy always attractive
- Repulsive forces at short distances due to wave function overlap

Lennard-Jones potential:

$$V(r) = -4\epsilon \left[\left(\frac{\sigma}{r}\right)^6 - \left(\frac{\sigma}{r}\right)^{12} \right]$$

- 2D behavior (monolayers, phase transitions)
- Measurement methods
 - Calorimetry
 - Diffraction (neutrons, electrons, X-rays, etc.)
 - *Volumetric adsorption isotherms*
 - Suspended single carbon nanotube resonator ()

How to Play a Nanoguitar

Adsorption and Phase Properties of Inert Gases on Suspended Single Carbon Nanotubes

Basics

Nanoguitar Basics

Classical 20 Adsorbates

⁴He Adsorption

lsosteric Heat

Comparison with Theory and Previous Measurements

Summary

- Oscillating AC voltage ⇒ sinusoidal electric field ⇒ Driven "harmonic" oscillator
- Lock-in detection using δf mixing current
- Mechanical resonance peaks of the nanotube appear as peaks in the locked in signal

Detecting coverage of adsorbates

Adsorption and Phase Properties of Inert Gases on Suspended Single Carbon Nanotubes

Ricky Roy

Adsorption Basics

Nanoguitar Basics

Classical 20 Adsorbates

⁴He Adsorption

Isosteric Heat

Comparison with Theory and Previous Measurements

Summary

Assumptions:

- $\ \ \, f\propto \rho^{-1/2}$
- Shifts in resonance frequency are due to changing inertial properties of resonator, not elastic properties.
- Define $\rho = m_{carbon} N_{carbon}$, $\Delta \rho = m_{adsorbate} N_{adsorbate}$, and $f_0 = \lim_{\Delta \rho \to 0} f_{res}$

$$\frac{f_{res}}{f_0} = \sqrt{1 + \frac{\Delta\rho}{\rho}}$$

$$\phi = \frac{N_{ads}}{N_{carbon}} = \frac{m_{carbon}}{m_{ads}} \left[\left(\frac{f_0}{f_{res}} \right)^2 - 1 \right]$$

Classical 2D Phase Behavior

Adsorption and Phase Properties of Inert Gases on Suspended Single Carbon Nanotubes

Ricky Roy

Adsorptior Basics

Nanoguitar Basics

Classical 2D Adsorbates

⁴ He Adsorption

lsosteric Heat

Comparison with Theory and Previous Measurements

Summary

- Behave as a van der Waals substance, i.e. same phase diagram in 2D
- Inert + high polarizability = ideal candidate (noble gases)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Classical vs. "Quantum" adsorbates (specifically ${}^{4}\text{He}$)

Adsorption and Phase Properties of Inert Gases on Suspended Single Carbon Nanotubes

Ricky Roy

Adsorption Basics

Nanoguitar Basics

Classical 2D Adsorbates

⁴He Adsorption

Isosteric Heat

Comparison with Theory and Previous Measurements

Summary

- Classical adsorbates approximated well with the Lennard-Jones potential ⇒ easily calculable binding energies
- Van der Waals interaction for He << classical 2D gases:

• $\alpha_{He} = 0.204 \text{ Å}^3 \text{ vs. } \alpha_{Xe} = 4.01 \text{ Å}^3$, $U_{dipole} \propto \alpha E^2$

- For He, wave function overlap may not be so well approximated by the r^{-12} in L-J $\,$
- Data from adsorption on bundles suggests ⁴He may not adsorb well to a single nanotube; most adsorption found in interstitial channels (Wilson, Vilches, Physica B **329**, 278 (2003))

4K Isotherm

Adsorptior Basics

Nanoguitar Basics

Classical 2E Adsorbates

4 He Adsorption

Isosteric Heat

Comparison with Theory and Previous Measurements

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

He Isotherms

Adsorptior Basics

Nanoguitaı Basics

Classical 20 Adsorbates

4 He Adsorption

Isosteric Heat

Comparison with Theory and Previous Measurements

Summary

◆□> ◆□> ◆三> ◆三> ・三 のへの

Isosteric Heat

Adsorption and Phase Properties of Inert Gases on Suspended Single Carbon Nanotubes

Ricky Roy

Adsorptior Basics

Nanoguitar Basics

Classical 2D Adsorbates

⁴He Adsorption

Isosteric Heat

Comparison with Theory and Previous Measurements

Summary

- For a system in an equilibrium state of phase coexistence, integrated Clausius-Clapeyron equation gives (to first approximation) $P = P_0 e^{-L/kT}$
- Consider 3D gas and 2D adsorbed phase as a two phase coexistence
- Isosteric heat of adsorption:

$$q_{st} = -k \frac{\partial \ln P}{\partial (1/T)} \Big|_{\phi}$$

- In the $\ln P 1/T$ plane, curves of constant ϕ are linear (experiment)
- $\blacksquare \lim_{\phi \to 0} q_{st} = E_b + T\Delta S(\approx kT) E_{zp}$

Measured Isosteric Heat

C

Measured q_{st} vs. "Predicted"

Adsorption and Phase Properties of Inert Gases on Suspended Single Carbon Nanotubes

Ricky Roy

Adsorptior Basics

Nanoguitaı Basics

Classical 2E Adsorbates

⁴He Adsorption

Isosteric Heat

Comparison with Theory and Previous Measurements

Summary

$$q_{st}^{exp} = 42.9 \text{ K}$$

- Using numerically integrated Lennard-Jones potential over cylinder (nanotube), $E_b = 142$ K for $^4{\rm He}$ on a 1 nm nanotube
- Zero point energy of He/graphite \approx 44 K

$$\blacksquare \Rightarrow q_{st}^{th} \approx (142 + 5 - 44) \text{ K} \approx 103 \text{ K}$$

- Evidently true quantum calculation needed to resolve discrepancy:
 - Wave function overlap may push r_0 further from tube \Rightarrow E_b and E_{zp} decrease

Summary and Acknowledgments

Adsorption and Phase Properties of Inert Gases on Suspended Single Carbon Nanotubes

Ricky Roy

Adsorptior Basics

Nanoguitar Basics

Classical 2E Adsorbates

⁴He Adsorption

Isosteric Heat

Comparison with Theory and Previous Measurements

Summary

- Preliminary adsorption data collected with ⁴He on a single nanotube
- Isosteric heat (on nanotube) inconsistent with models which work for less quantum gases
- To try: Adsorb ⁴He on different nanotube, find q_{st} dependence on diameter

Thank You

Professor David Cobden Professor Oscar Vilches Zenghui Wang Hao-Chun Lee Erik Fredrickson