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An efficient equation of motion method is introduced for calculating the variance of the half
scattering path lengths, σ2

j , which appear in multiple-scattering x-ray absorption fine-structure
Debye-Waller factors. The approach is to obtain the correlation function via already existing im-
plementations based on density functional theory which then makes it possible to calculate the
projected vibrational density of states and finally σ2

j from first principles. A sample application is
provided for germanium.

I. INTRODUCTION

In the recent years, x-ray absorption fine-structure
(XAFS) has become a widely used technique for deter-
mining the local structure of complex materials. The
physical origin of XAFS is the absorption of an x-ray
photon by an atom leading to the excitation of a core-
electron. The final state photoelectron wave will expe-
rience scattering off of the neighboring atoms, creating
characteristic “wiggles” in absorption coefficient, µ, as
a function of the photon energy. The structural infor-
mation XAFS experiments provide include coordination
number and interatomic distances. Thermal vibrations
and structural disorder give rise to Debye-Waller factors,
e−W (T ), which dampen the XAFS spectra with respect
to increasing temperature and energy of the photoelec-
tron created in the absorption process. Because of this
exponential decay, a first principles understanding of the
Debye-Waller factors is crucial for a successful quantita-
tive treatment of x-ray absorption spectra1.

The Debye-Waller factors have conventionally been ob-
tained using isotropic models which make use of exper-
imental fitting or semi-empirical methods, e.g. the cor-
related Einstein and Debye models. In this paper, an
ab initio equation of motion method (EM) is presented
for calculating the Debye-Waller factors. This method
is a significant improvement over the conventional meth-
ods. Also, since no diagonalization of huge matrices is re-
quired, it is applicable to large, aperiodic systems where
solving the full eigenvalue problem would be very time-
consuming.

In this work, results for crystal Germanium of the di-
amond space group is presented. It has previously been
shown2 that applying e.g. the correlated Debye model to
a structure this anisotropic produces poor results. The
equation of motion method however, reproduces experi-
mental values satisfactorily.

II. FORMALISM

A. X-ray absorption fine-structure (XAFS)

In x-ray absorption spectroscopy the interesting ex-
perimental quantity is the absorption coeffient µ, mea-

FIG. 1. The absorption coefficient µ(E) (blue), the smooth
atomic-like background function µ0(E) (red) and the edge-
jump ∆µ. E is the x-ray photon energy.

sured as a function of the incoming x-ray photons. When
plotting µ as a function of the incoming photon energy
(Figure 1), the experimental data show two noticeable
features. First of all, the absorption coefficient µ has a
steep rise at certain energies, called edge energies. The
position of these energies correspond to the excitation
energy of a core-electron.

The second feature is the oscillatory behavior of µ(E)
just above an edge. The origin of these oscillations can
be found by considering an incoming photon getting ab-
sorbed by an atom, thereby exciting a core-electron and
producing a photoelectron and a core-hole in the final
state. The outgoing photoelectron, seen as a quantum
wave, will scatter off neighboring atoms, creating an
interference pattern (Figure 2). According to Fermi’s
Golden Rule the transition probability, in this case µ, is
proportional to a transition matrix element squared

µ ∝ |〈f |Htrans|i〉|2 (1)

where f and i refer to final and initial states, respectively.
The interference pattern modulates the matrix element
thus shifting the value of µ. Since this interference pat-
tern is energy dependent, µ will also be, hence giving
rise to the oscillating fine-structure. This motivates the
definition of the x-ray absorption fine-structure spectrum
(XAFS) as the normalized, oscillatory part of µ
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FIG. 2. Idealized picture of a photoelectron wave scattering
of neighboring atoms creating an interference pattern. The
upper atom is the absorbing atom, the source of the wave.
The waves decay at long distances from the source, which is
reflected in the thickness of the circles.

χ
def
=

(µ− µ0)

∆µ0
(2)

where µ0 is an “atomic-like” absorption, i.e. the ab-
sorption that would be measured if one imagines turning
off the effects due to the photoelectron scattering. ∆µ0

is a normalization factor which is in principle energy-
dependent but is in practice usually taken to be the jump
in absorption at the energy edge.

For the extended XAFS (EXAFS) energy region and in
the harmonic approximation, the XAFS spectrum can be
parametrized by the so called standard XAFS equation

χ(k) =
∑
j

NjS
2
0

kR2
j

|feffj (k,Rj)|

× sin(2kRj + φj(k))e−2Rj/λe−2σ2
jk

2

(3)

Here the sum runs over all unique (multiple or single)

scattering paths j of degeneracy Nj . feffj is the effec-

tive scattering amplitude for path j, S2
0 is a many-body

amplitude reduction factor, φj(k) is the net phase shift,
k = E −Eedge is a wavenumber measured relative to the
edge energy, Rj is half the equilibrium scattering path
length of path j. λ is the photoelectron mean free path.

The Debye-Waller factor can be identified with e−2σ2
jk

2

,
where σ2

j is is defined as the variance of the scattering
path length

σ2
j = 〈(rj −Rj)2〉 (4)

where the brackets denote a thermal average and rj is
the instantaneous half path length. The general defini-
tion of the Debye-Waller factors e−Wj is given by the
configurational and thermal average

〈eikrj 〉 = e2ikRje−Wj(k) (5)

In this paper, we focus only on thermal disorder since
structural disorder is dependent on the sample prepara-
tion and history. For small vibrations, the average can
be expressed in terms of the cumulant expansion

Wj(T ) = −
∞∑
n=1

(2ik)n

n!
σ

(n)
j (T ) (6)

where σ
(n)
j (T ) is the n-th cumulant average. Neglect-

ing anharmonic terms, this reproduces the Debye-Waller
factors of Equation (3).

B. The equation of motion method

The equation of motion (EM) method used in this pa-
per was first introduced by Rehr and Alben3 and Beeman
and Alben4 in order to calculate the total vibrational
density of states and related quantities. The equation of
motion method is efficient for large, complex systems in
which the näıve way of solving the problem by diagonal-
izing huge matrices would be too time-consuming to be
practical.

The EM method is based on solving 3N coupled New-
ton’s equations of motion, where N is the number of
atoms in the cluster. Regarding the potential energy V
of the system as a function of the atomic displacements
from equilibrium, ui = ri−Ri, and keeping only terms of
second order in u, one obtains the equations of motion5

d2Qiα(t)

dt2
= −

∑
kβ

Diα,kβQkβ (7)

where Qiα(t) = uiα/
√
Mi and Mi is the mass of atom at

site i. The force constants of the system is contained in
the 3N × 3N dynamical matrix Diα,kβ defined by

Diα,kβ =
∂2V

∂uiα∂ukβ
(8)

Making an ansatz of oscillatory solutions, Qiα(t) =
εiα(λ)e−iωλt, Equation (7) reduces to an eigenvalue prob-
lem for the 3N , 3N -dimensional eigenvectors |λ〉 with el-
ements εiα(λ), each with a corresponding eigenfrequency
ωλ

ω2
λεiα(λ) =

∑
kβ

Diα,kβεkβ(λ) (9)
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We can thus expand the displacements Qiα in terms of
the normal modes

Qiα =
∑
λ

εiα(λ)q0(λ)e−iωλt (10)

where the eigenmodes are here chosen orthonormal,
〈λ|λ′〉 = δij and q0(λ) is a constant amplitude factor
for each mode λ.

By Taylor expanding σ2
j using Equation (4), assuming

small vibrations around the equilibrium positions, σ2
j can

be written as a function of the displacement vectors

σ2
j =

1

4

〈[
nj∑
i=1

(ui − ui+) · R̂ii+

]2〉
(11)

where nj is the number of participating atoms in scatter-
ing path j. Using the normal mode expansion of Equa-
tion (10), evauluating the thermal average using Bose-
Einstein statistics, we can rewrite σ2

j in terms of the nor-
mal modes λ,

σ2
j =

h̄

2µj

∑
λ

1

ωλ
coth

βh̄ω

2
×

[∑
i

√
µj
Mi

(
R̂ii− + R̂ii+

2

)
· εi(λ)

]2

(12)

By setting the initial conditions of the problem to be in
the direction of

|Qj(0)〉 def
=



1
2

√
µj
M1

(R̂1,nj + R̂1,2)

...
1
2

√
µj
M1

(R̂1,i− + R̂i,i+)

...
0


(13)

and defining the projected vibrational density of states
(VDOS) to be

ρj(ω)
def
=
∑
λ

|〈λ|Qj(0)〉|2δ∆(ω − ωλ) (14)

where δ∆(ω) is a delta-like function of width ∆, one ob-
tains a normal mode integral expression for σ2

j

σ2
j (T ) =

h̄

2µj

∫ ωmax

0

dω

ω
ρj(ω) coth

βh̄ω

2
(15)

The constant µj in these above equations is the reduced
mass of scattering path j. It is defined by requiring that
the initial value displacement vectors of Equation (13)
are unit normalized, |〈Qj(0)|Qj(0)〉 = 1 Obtaining ρj(ω)
via Equation(14) would involve an expensive diagonal-
ization of the dynamical matrix D in order to get all the
normal modes. Thus, it is preferable to instead obtain
it using the correlation function, 〈Qj(t)|Qj(0)〉. Fourier
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FIG. 3. The damped correlation function of germanium,

〈Q(t)|Q(0)〉e−εt
2

.

transforming this function extracts the normal modes in-
volved for scattering path j

ρj(ω) =
2

π

∫ tmax

0

〈Qj(t)|Qj(0)〉e−εt
2

cos(ωt)dt (16)

where e−εt
2

is a damping factor included for computa-
tional efficiency.

The correlation function can be calculated using avail-
able implementations based on density functional theory.

III. APPLICATIONS

A. Germanium

The crystal considered in our study was a 64-atom clus-
ter of Ge of the diamond space group with enforced pe-
riodic boundary conditions. Calculations were made for
the single scattering nearest neighbour path at a temper-
ature of 300 K.

The correlation function was obtained using the den-
sity functional theory based implementation VASP. The
result is illustrated in Figure 3. The oscillating system
was iterated forward 4500 fs in time. From the figure, one
can note the presence of a dominating frequency and the
period of those oscillations is around 117 fs. This leaves
us with about 38 full vibrational cycles. In practice how-
ever, one would probably only include ∼10 cycles or less
for computational efficiency.

The calculated projected and total VDOS is presented
in Figure 4 in comparison with experimental data for the
total VDOS6. Just as with the correlation function, one
can note the presence of a dominating frequency at about
53 T rad/s, in all three spectra. Also, the calculated ver-
sus experimental total VDOS compare reasonably well
considering the general features of the plots. The larger
width of the calculated total VDOS compared to the pro-
jected one, is most likely a time length effect, since for
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FIG. 4. Calculated single-scattering nearest neighbor (blue),
calculated total (red) and experimental total (pink) VDOS.
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FIG. 5. Temperature dependence of σ2(T ) − σ2(0) for the
equation of motion method (blue), the correlated Debye
model (pink) in comparison with experimental data (red).

this calculation the correlation function was only deter-
mined for about 1200 fs. The more confined the cor-
relation function is in time, the more its transform will
spread out in frequency space.

The important quantity for obtaining the Debye-
Waller factors, σ2

j , was determined to be 3.23 10−3Å2.

The experimental value available is 3.50 10−3Å2 7 . See-
ing as our accuracy requirements lie in the 10-20% range,
this deviation of less than 10% is considered to be a suc-
cessful result.

We can also study the temperature dependence of our
result. Figure 5 shows the temperature dependence of
σ2 at temperature T relative to σ2 at 0 K, which is the
quantity that can usually be extracted from experiment.
The pink line shows results using the correlated Debye
model and the blue line contains experimental data. It
is clear how poorly the correlated Debye model performs
compared to the EM method, shown in blue.

The effect of the time length and time step length of
the correlation function was also studied. The effect of
changing the time length from 4500 fs to 700 fs was to
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FIG. 6. The change in σ2 relative to σ2(2250), where 2250 is
the maximum number of time steps used in the calculation.

change σ2 from 3.23 10−3Å2 to 3.60 10−3Å2. Doubling
the time step length from 2 fs to 4 fs changed σ2 from
3.23 10−3Å2 to 3.46 10−3Å2, while a tripling resulted in
3.66 10−3Å2. The relative shift in σ2 due to time length
effects is illustrated in Figure 6. Here, the y-axis is the
relative “error” in σ2 that is introduced due to decreased
time length. Note that the x-axis shows the number of
time steps and not the actual time.

IV. CONCLUSIONS

Debye-Waller factors were calculated with the equa-
tion of motion method using the correlation function ap-
proach. The calculations were performed for the single
scattering, nearest neighbor path of crystalline germa-
nium. Our results show that this method produces satis-
factory results for germanium in comparison with avail-
able experimental data, while the correlated Debye model
does not. The traditional methods are therefore deficient
when it comes to more complex and nonisotropic struc-
tures. It is hence important for the development of x-ray
absorption spectroscopy that better models such as the
equation of motion method is investigated further. Fu-
ture studies might include:

• Validate the equation of motion method for multi-
ple scattering paths, e.g. for germanium.

• Apply the equation of motion method to other more
complex structures.

• Analyze in more detail how time length, time step
length and other computational factors affect the
final result for σ2.
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