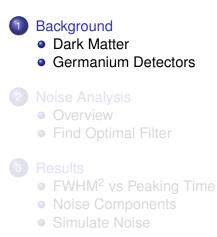
Results

Noise Analysis in the Majorana Dark Matter Detector

Greg Dooley


Princeton University

INT REU at the University of Washington, 2010

Background	Noise Analysis 00000	Results oooooooo	Summary

Outline

Background	Noise Analysis	Results oooooooo	Summary

Outline

Background

- Dark Matter
- Germanium Detectors

2 Noise Analysis

- Overview
- Find Optimal Filter

- FWHM² vs Peaking Time
- Noise Components
- Simulate Noise

Background	Noise Analysis	Results oooooooo	Summary

Outline

Background

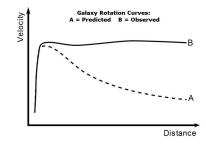
- Dark Matter
- Germanium Detectors

2 Noise Analysis

- Overview
- Find Optimal Filter

- FWHM² vs Peaking Time
- Noise Components
- Simulate Noise

Background ●oooooo	Noise Analysis	Results 0000000	Summary
Dark Matter			
Outline			


BackgroundDark Matter

- Germanium Detectors
- 2 Noise Analysis
 - Overview
 - Find Optimal Filter

- FWHM² vs Peaking Time
- Noise Components
- Simulate Noise

Background o●ooooo	Noise Analysis	Results 0000000	Summary
Dark Matter			
Dark Matter Evi	dence		

ヘロト 人間 とくほとう ほとう

æ

- Galactic Rotation Curves
- Gravitational Lensing
- Matter distribution in early universe

Background	Noise Analysis	Results 00000000	Summary
Dark Matter			
Dark Matter The	eories		

Theories:

- WIMPS Weakly Interacting Massive Particles
- Axions

How to make detections?

- Nuclear recoil
- Annual modulations from dark matter halo
- Possible DAMA/LIBRE results

Goals of Majoranna

Search for WIMPs in the 1-10 GeV/c² mass range

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э

- Resolve energies of < 1KeV
- Achieve ultra low background

Background	Noise Analysis	Results	Summary
Germanium Detectors			
Outline			

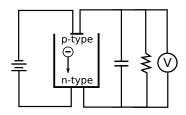
Background

- Dark Matter
- Germanium Detectors

Noise Analysis

- Overview
- Find Optimal Filter

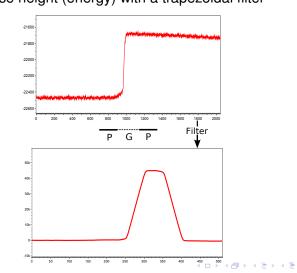
- FWHM² vs Peaking Time
- Noise Components
- Simulate Noise



Background	Noise Analysis	Results 00000000	Summary
Germanium Detectors			

Germanium Detector

High Purity P-type Point Contact (PPC) ⁷⁶Ge detector:


- Reverse biased semi-conductor
- Atomic interactions kick electrons into conduction band
- Charge collected on capacitor
- Signal varies linearly with incident energy
- Reduce leakage current by LN cooling

Simplified diagram of Ge detector

Background ○○○○○●○	Noise Analysis	Results 00000000	Summary
Germanium Detectors			
Signal Analys	sis		
Measure puls	se height (energy) wit	h a trapezoidal filter	

æ

Background

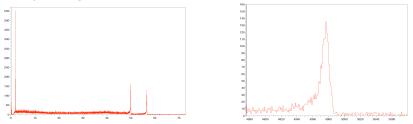
Noise Analysis

Results 00000000 Summary

Germanium Detectors

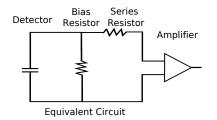
CoGeNT Detector in the Majorana Lab

W


Background	Noise Analysis ●○○○○	Results 00000000	Summary
Overview			
Outline			

Background	Noise Analysis o●ooo	Results 0000000	Summary
Overview			
Objective 1			

Find peaking time, P, that minimizes electronic noise



• Noise measured by FWHM of energy peak

Understand the components of the noise power spectrum

イロト 不得 トイヨト イヨト

э

Three components:

• Parallel:
$$V(f)^2 = \frac{k_1}{1+k_2f^2}$$

Series: V(f)² = k₃

• 1/f:
$$V(f)^2 = \frac{k_4}{f}$$

Background	Noise Analysis ○○○●○	Results 0000000	Summary
Find Optimal Filter			
Outline			

・ロン ・ 四 と ・ 回 と ・ 回 と

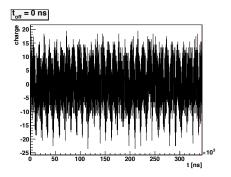
æ

- Dark Matter
- Germanium Detectors

2 Noise Analysis

- Overview
- Find Optimal Filter

- FWHM² vs Peaking Time
- Noise Components
- Simulate Noise

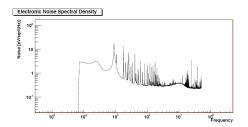

Results 00000000 Summary

Find Optimal Filter

Procedure to Find Optimal Peaking Time

Obtain raw noise pulses

- Take fourier transform to get power spectrum
- Apply trapezoidal filter to the power spectrum
 - Compute transfer function
- Integrate over spectrum to get RMS, FWHM
- Repeat for various peaking times


(日)

Results 00000000

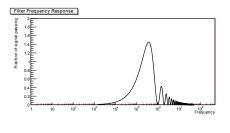
Find Optimal Filter

Procedure to Find Optimal Peaking Time

- Obtain raw noise pulses
- Take fourier transform to get power spectrum
- Apply trapezoidal filter to the power spectrum
 - Compute transfer function
- Integrate over spectrum to get RMS, FWHM
- Repeat for various peaking times

Background

Noise Analysis

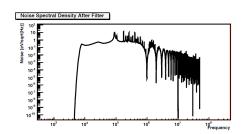

Results 00000000 Summary

Find Optimal Filter

Procedure to Find Optimal Peaking Time

- Obtain raw noise pulses
- Take fourier transform to get power spectrum
- Apply trapezoidal filter to the power spectrum
 - Compute transfer function
- Integrate over spectrum to get RMS, FWHM
- Repeat for various peaking times

$$H(f) = \frac{2}{\pi f P} sin(\pi f P) sin(\pi f (P + G))$$


(日)

Results 00000000 Summary

Find Optimal Filter

Procedure to Find Optimal Peaking Time

- Obtain raw noise pulses
- Take fourier transform to get power spectrum
- Apply trapezoidal filter to the power spectrum
 - Compute transfer function
- Integrate over spectrum to get RMS, FWHM
- Repeat for various peaking times

(日)

Results 00000000

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

э

Find Optimal Filter

Procedure to Find Optimal Peaking Time

- Obtain raw noise pulses
- Take fourier transform to get power spectrum
- Apply trapezoidal filter to the power spectrum
 - Compute transfer function
- Integrate over spectrum to get RMS, FWHM
- Repeat for various peaking times

Background	Noise Analysis	Results ••••	Summary
FWHM ² vs Peaking Time			
Outline			

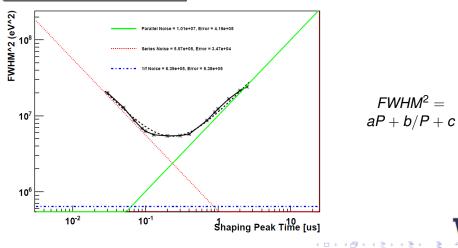
1) Background

- Dark Matter
- Germanium Detectors

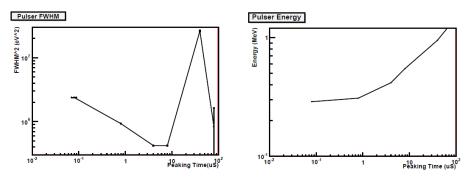
2 Noise Analysis

- Overview
- Find Optimal Filter

3 Results


• FWHM² vs Peaking Time

- Noise Components
- Simulate Noise



Background	Noise Analysis	Results	Summary
FWHM ² vs Peaking Time			
FWHM ² Curve			

FWHM² vs Peak Shaping Time

Background	Noise Analysis	Results oo●ooooo	Summary
FWHM ² vs Peaking Time			
FWHM ² Cur	ve		

 Tried to reproduce results by measuring the FWHM directly from an energy spectrum

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

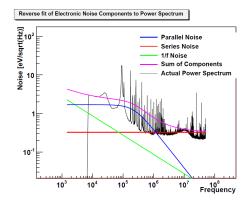
More work needs to be done

Background	Noise Analysis	Results ○○○●○○○○	Summary
Noise Components			
Outline			

- Dark Matter
- Germanium Detectors

- Overview
- Find Optimal Filter

- FWHM² vs Peaking Time
- Noise Components
- Simulate Noise

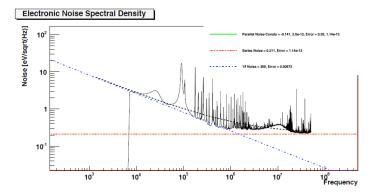

Background

Noise Analysis

Results ○○○●○○○

Noise Components

Components of Power Spectrum



Two problems:

- Fit to 1/f noise is highly variable.
- Parallel noise requires two constants. Fit to FWHM vs Peak Time only determines one.

Noise Components

Direct fit to power spectrum does no better.

Background	Noise Analysis 00000	Results ○○○○○○●○	Summary
Simulate Noise			
Outline			

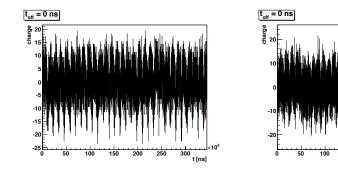
ヘロト 人間 とくほとくほとう

æ

- Dark Matter
- Germanium Detectors

2 Noise Analysis

- Overview
- Find Optimal Filter


- FWHM² vs Peaking Time
- Noise Components
- Simulate Noise

Background	

Results

Simulate Noise

Simulated Noise

Actual noise

Simulated noise

ヘロア 人間 アメヨアメヨ

150 200 250 300

(10³

t [ns]

Background	Noise Analysis	Results 00000000	Summary
Summary			

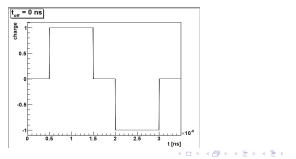
- Optimal peak time can be determined from raw electronic noise.
- Parallel, series and 1/f noise components can be estimated with some work.
- Overall goal: Minimize noise to increase sensitivity to low energy DM interactions.
- Future Work
 - Calibrate of noise in eV
 - Collect accurate data on FWHM vs peak time directly
 - Understand features of power spectrum better

Acknowledgments:

- Mike Miller
- Mike Marino
- Jonathan Diaz Leon
- Tim Van Wechel
- Entire EWI group
- INT REU

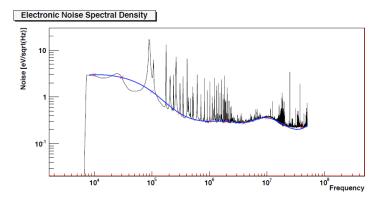
Extra Slides

Background	Noise Analysis	Re


Impulse Function

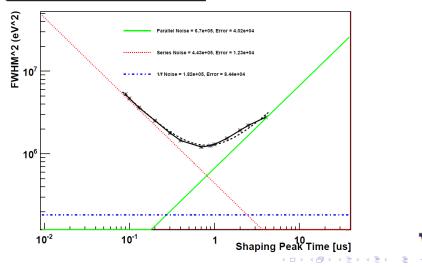
$$F(f(t)) = O(t)$$

$$f(t) \star I(t) = O(t)$$


$$\hat{f}(t) \cdot \hat{I}(t) = \hat{O}(t)$$

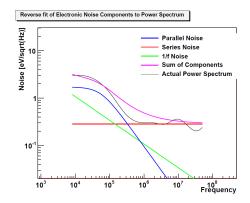
$$H(f) = \frac{2}{\pi f P} sin(\pi f P) sin(\pi f (P + G))$$

æ



Background	

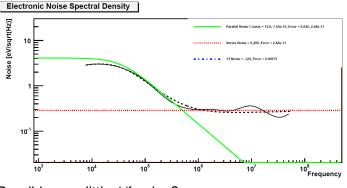
Results


FWHM² Curve

FWHM^2 vs Peak Shaping Time

Results 00000000

Components of Power Spectrum

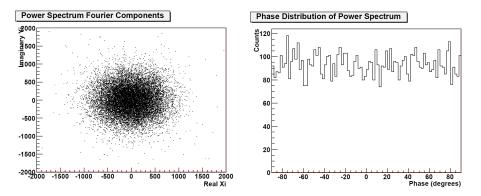

Two problems still remain:

- Fit to 1/f noise is highly variable.
- Parallel noise requires two constants. Fit to FWHM vs Peak Time only determines one.

Background	

Results

Possibly very little 1/f noise?



Results 00000000

(日)

Summary

Independence of Real and Imaginary Fourier Components

