
Effects of Weak Disorder on Electron Diffusion in
2D Lattices

A. Boyd1, D. Thouless2

25 August 2010

A. Boyd, D. Thouless Weak Disorder in 2D Lattices



Background

I In 1958, P. W. Anderson showed that for a lattice with strong
disorder there is an absence of diffusion. (localized states)

I In a one dimensional chain, any amount of disorder produces
localized states.

I The behavior of electrons in 2D without strong disorder is
unclear.
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Motivation

I Semiconductor is like a weakly disordered lattice.
I Localized states correspond to less conduction.

I Conductors have extended electron states, and go to finite
conductivity at low temperature.

I Insulators have localized states, and go to zero conductivity at
low temperatures.

I Scaling theory suggests that all disordered states in a 2D
lattice are localized, but we have found 2D conductors.

I Does any amount of disorder result in localized states?
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The Model

I We have a single electron and a 2D square lattice, with the
wavefunction of the electron defined at every site of the
lattice.

I Our Hamiltonian is a hopping matrix.

I How do electron’s behave in this system?
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Strategy

I The space we are considering is infinite, and we have infinitely
many eigenstates, so we cannot use the standard method of
analysis.

I Instead, we try to calculate the tridiagonal matrix
representation of the Hamiltonian, using the Lanczos
Algorithm.

I Tridiagonal matrix has many useful properties, including the
fact that it’s eigenvalues approach eigenvalues of the
Hamiltonian.

I Lanczos Algorithm only requires the original matrix and an
initial state to produce an orthonormal basis and approximate
eigenvalues.
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Lanczos Algorithm Pt. 1

I In order to generate an orthonormal set of wavefunctions
(ψ0, ψ1, ψ2, ..., ψN), we use the recursive relation:

Ĥψn = −bn−1ψn−1 + anψn − bnψn+1. (1)

I Thus, an = ψnĤψn, and bn−1 = −ψn−1Ĥψn.

I This provides us with an algorithm, where we can determine
the tridiagonal matrix for the Hamiltonian.
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Lanczos Algorithm Pt. 2

I We start with an initial state ψ0 for which the wavefunction is
zero everywhere, representing no electron, and ψ1, where the
wavefunction is all located at the origin of the lattice.

I With the an and bn generated from these initial states, we get
the tridiagonal matrix.

a1 b1 · · · 0 0
b1 a2 · · · 0 0
...

...
. . .

...
...

0 0 · · · aN−1 bN−1

0 0 · · · bN−1 aN

 (2)
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Simple Case Pt. 1

What if we consider the case of no disorder?

I The sequential ψn have the following behavior:
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Simple Case Pt. 2
I The amplitude along the diagonal is an analytically derivable

oscillating function, with a maximum at the edge of the

support.
I The amplitude along the axes peaks at approximately 1√

2
the

way to the edge of the support.
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Simple Case Pt. 3

The tridiagonal becomes simple.

I bn = 2 and an = 0 for all n.
0 2 · · · 0 0
2 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 2
0 0 · · · 2 0

 (3)
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A Single Impurity

I Introduce an energy
εi at the a single site.

I You can view the
resulting disorder as
scattering of the
wave-front off of that
impurity.

I The disorder from the
impurity manifests as
a spike in the
diagonal element of
the tridiagonal
matrix, which
decreases over
sequential iterations.
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Uniform Random Disorder

I We introduce a bounded random disorder εn at every point.

I Can be viewed as a sum of the effects caused by individual
sites if considering small disorder.

I If we select εn within the region (− 1
10 ,

1
10), the diagonal

element behaves in a less ordered way.

A. Boyd, D. Thouless Weak Disorder in 2D Lattices



Lyapunov Exponent

I R1,N(E ) =
QN−1

i=1 bi

det(EI−TN)
is the upper right corner element of the

Green matrix, which is the inverse of (EI − TN).

I R1,N(E ) represents the probability amplitude of an electron
with energy E tunneling across the support.

I κ = − 1
N ln|

QN−1
i=1 bi

det(TN−E∗I ) | is the Lyapunov exponent.

I For extended states, κ→ 0 as N →∞.

I For localized states, κ trends to a number greater than zero
as N →∞.
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Interim Results

A. Boyd, D. Thouless Weak Disorder in 2D Lattices



Interim Results

I Localization is only
obvious for relatively
high disorder.
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