Effects of Weak Disorder on Electron Diffusion in 2D Lattices

A. Boyd¹, D. Thouless²

25 August 2010

Background

- \triangleright In 1958, P. W. Anderson showed that for a lattice with strong disorder there is an absence of diffusion. (localized states)
- \blacktriangleright In a one dimensional chain, any amount of disorder produces localized states.
- \triangleright The behavior of electrons in 2D without strong disorder is unclear.

Motivation

- \triangleright Semiconductor is like a weakly disordered lattice.
- \blacktriangleright Localized states correspond to less conduction.
	- \triangleright Conductors have extended electron states, and go to finite conductivity at low temperature.
	- \triangleright Insulators have localized states, and go to zero conductivity at low temperatures.
- \triangleright Scaling theory suggests that all disordered states in a 2D lattice are localized, but we have found 2D conductors.
- Does any amount of disorder result in localized states?

The Model

- \triangleright We have a single electron and a 2D square lattice, with the wavefunction of the electron defined at every site of the lattice.
- \triangleright Our Hamiltonian is a hopping matrix.

 \blacktriangleright How do electron's behave in this system?

Strategy

- \triangleright The space we are considering is infinite, and we have infinitely many eigenstates, so we cannot use the standard method of analysis.
- Instead, we try to calculate the tridiagonal matrix representation of the Hamiltonian, using the Lanczos Algorithm.
	- \blacktriangleright Tridiagonal matrix has many useful properties, including the fact that it's eigenvalues approach eigenvalues of the Hamiltonian.
- \blacktriangleright Lanczos Algorithm only requires the original matrix and an initial state to produce an orthonormal basis and approximate eigenvalues.

Lanczos Algorithm Pt. 1

 \blacktriangleright In order to generate an orthonormal set of wavefunctions $(\psi_0, \psi_1, \psi_2, ..., \psi_N)$, we use the recursive relation:

$$
\hat{H}\psi_n = -b_{n-1}\psi_{n-1} + a_n\psi_n - b_n\psi_{n+1}.\tag{1}
$$

つくへ

$$
\blacktriangleright
$$
 Thus, $a_n = \psi_n \hat{H} \psi_n$, and $b_{n-1} = -\psi_{n-1} \hat{H} \psi_n$.

 \triangleright This provides us with an algorithm, where we can determine the tridiagonal matrix for the Hamiltonian.

Lanczos Algorithm Pt. 2

- \triangleright We start with an initial state ψ_0 for which the wavefunction is zero everywhere, representing no electron, and ψ_1 , where the wavefunction is all located at the origin of the lattice.
- \triangleright With the a_n and b_n generated from these initial states, we get the tridiagonal matrix.

$$
\begin{pmatrix}\n a_1 & b_1 & \cdots & 0 & 0 \\
b_1 & a_2 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & a_{N-1} & b_{N-1} \\
0 & 0 & \cdots & b_{N-1} & a_N\n\end{pmatrix}
$$
\n(2)

Simple Case Pt. 1

What if we consider the case of no disorder?

 \blacktriangleright The sequential ψ_n have the following behavior:

Simple Case Pt. 2

 \triangleright The amplitude along the diagonal is an analytically derivable oscillating function, with a maximum at the edge of the

► The amplitude along the axes peaks at approximately $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ the way to the edge of the support.

Simple Case Pt. 3

The tridiagonal becomes simple.

$$
b_n = 2 \text{ and } a_n = 0 \text{ for all } n.
$$

(3)

 $2Q$

∍

A Single Impurity

- \blacktriangleright Introduce an energy ϵ_i at the a single site.
- \blacktriangleright You can view the resulting disorder as scattering of the wave-front off of that impurity.
- \blacktriangleright The disorder from the impurity manifests as a spike in the diagonal element of the tridiagonal matrix, which decreases over sequential iterations.

Uniform Random Disorder

- \triangleright We introduce a bounded random disorder ϵ_n at every point.
- \triangleright Can be viewed as a sum of the effects caused by individual sites if considering small disorder.
- If we select ϵ_n within the region $\left(-\frac{1}{10}, \frac{1}{10}\right)$, the diagonal element behaves in a less ordered way.

Lyapunov Exponent

 $R_{1,N}(E) = \frac{\prod_{i=1}^{N-1} b_i}{\det(E) - T}$ $\frac{11_{i=1}D_i}{\det(EI-T^N)}$ is the upper right corner element of the Green matrix, which is the inverse of $(EI - T^N)$.

 $R_{1,N}(E)$ represents the probability amplitude of an electron with energy E tunneling across the support.

$$
\triangleright \kappa = -\frac{1}{N} \ln \left| \frac{\prod_{i=1}^{N-1} b_i}{\det(\overline{T^N - E} \cdot I)} \right|
$$
 is the Lyapunov exponent.

- ► For extended states, $\kappa \to 0$ as $N \to \infty$.
- For localized states, κ trends to a number greater than zero as $N \rightarrow \infty$.

Interim Results

 \leftarrow \Box \rightarrow

× 伺 \sim a. ŧ

к

Þ

∍ \mathbf{h} È

Interim Results

20

40

60

80

∸N

つくへ

∍

Thanks

- \blacktriangleright David J. Thouless
- **Alejandro Garcia, Subhadeep Gupta**
- \blacktriangleright Institute for Nuclear Theory
- \blacktriangleright University of Washington
- \blacktriangleright National Science Foundation

 Ω

Bibliography

- 1. P.W. Anderson, Phys. Rev. 109, 1492 (1958)
- 2. D. C. Herbert and R. Jones, J. Phys. C : Solid St Phys. 4, 1145 (1971)
- 3. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979)