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1 Introduction

In 1958, P. W. Anderson showed that for particles in a lattice with strong
disorder, the wavefunctions do not diffuse through the system in the way that
is expected from Bloch waves. Instead, they are located in a single region, with
an exponential amplitude falloff as you travel further from the center of the
wavefunction. This property of the wavefunction became known as localization.

The existence of localized states, versus extended states, is important be-
cause of its application to the behavior of electrons in solids. The localization of
electrons within a solid is inversely correlated to the conductivity of that solid.
Conductors, which approach finite conductivity as you go to lower and lower
temperatures, have extended electron states. Insulators, whose conductivity
goes to zero as temperature goes to zero, have localized states. Because of the
significance of the concept of localization through disorder, for his work in on
the subject, Anderson eventually earned the Nobel Prize.

However, practically, we are interested in cases where the disorder of the
solid is not necessarily strong. For example, a doped semiconductor can be
thought of as a weakly disordered lattice. Though, when considering weak
disorder, the behavior of electrons within the lattice is less clear. For a one
dimensional lattice, any amount of disorder results in localization. But, for a two
dimensional lattice there isn’t consensus on the behavior of the electrons. There
have been attempts to show that any amount of disorder in two dimensions
result in localized states. However, we have found 2D objects which appear to
be conductors.

Thus, we investigate weak disorder in the two dimensional case. We would
like to know what kind of disorder is required to produce localization.

2 Anderson Model

The model we use to investigate disorder is the same as the one Anderson used
in his 1958 paper. We consider a single electron and a square lattice, where the
electron’s wavefunction is defined at each point in the lattice. The Hamiltonian
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for this system is defined to be

Ĥ = −
∑

(n,n′)

a†nan′ +
∑

n

εna
†
nan. (1)

n sums over all sites, and(n, n′) sums over all nearest neighbors. a†n and an

are the creation and annihilation operators respectively. εn is a small energy
associated with the site n, and which introduces the disorder into the system.
In our model, the εn are randomly distributed over some finite range for a
disordered system. The more disordered the system, the wider that range is.
For a system with no disorder, εn = 0 for all n.

To illustrate how this Hamiltonian operates, consider figure 1.

Figure 1: An illustration of how the Hamiltonian operates.

This Hamiltonian is known as the hopping matrix for this system, because it
gives a negative energy for the electron ”hopping” from one site to an adjacent
site in the first term of the Hamiltonian. The fact that the energy is negative
tells us that the electron typically tries to spread out to it’s nearest neighbors,
diffusing through the system. If there was no disorder, and the εn were zero, then
the electron would diffuse outwards in a Bloch wave state. However, behavior
is more complicated when we introduce disorder, which randomizes the energy
associated with the electron staying in the same site.

3 Lanczos Algorithm

If you have the matrix Ĥ, and you have an orthonormal set of electron states
ψ0, ψ1, ψ2, ..., ψm, which spans the subspace Sm then the best approximation
of the eigenvalues of Ĥ, (λ0, λ1, ..., λm), which correspond to eigenstates in
Sm are given by the eigenvalues of the matrix Tm = LT ĤL, where L =
(ψ0, ψ1, ψ2, ..., ψm). If Sm is the subspace spanned by ψ0, Ĥψ0, Ĥ

2ψ0, ..., Ĥ
m−1ψ0,
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then Tm is tridiagonal of the form
a1 b1 · · · 0 0
b1 a2 · · · 0 0
...

...
. . .

...
...

0 0 · · · am−1 bm−1

0 0 · · · bm−1 am

 (2)

From the relation Tm = LT ĤL, we get the expressions

ai = ψiĤψi (3)

bi−1 = ψi−1Ĥψi. (4)

Also, since LT = L−1, we get that LTm = ĤL, and since Tm is diagonal, we
get the relation

Ĥψi = bi−1ψi−1 + aiψi + biψi+1. (5)

Note we can also flip the signs on equations (3), (4), and (5) and they would
still be true.

If we know ψi−1, ψi, and Ĥ, then, since ai and bi−1 are determined in terms
of those objects, it is possible to determine biψi+1. Then, since we know that
the electron’s wavefunction ψi+1 is normalized, we can also find ψi+1 and bi.

Thus, we have a method by which we can generate any sized tridiagonal
matrix whose eigenvalues approximate those of Ĥ. All we need are two initial
wavefunctions to start the process. We choose the initial two states to be ψ0,
which represents the absence of an electron, with all entries in the lattice being
zero, and ψ1, which represents the state where the electron’s wavefunction is
completely located at the origin. We can carry out the process of finding new
elements of the tridiagonal infinitely using these two states.

4 Results With No Disorder

When we don’t include any disorder in our Hamiltonian, and we carry out the
Lanczos Algorithm, we see some very consistent behavior. The region in which
the wavefunction is nonzero is called the support. The support of each sequential
wavefunction expands by one unit along the edges of the lattice, producing a
square. However, the wavefunction behaves differently as you go away from the
origin, depending on the angle you have with the axis. For example, along the
diagonal of the lattice, the wavefunction is an oscillating, analytically derivable
function. It’s maximum occurs at the edge of the support as shown in Figure
2. While, along the axes, the function is not analytically derivable, and the
maximum comes at approximately 1/

√
2 times the distance to the edge of the

support, and you can see in figure 3.
To get a better picture of the system as a whole, consider the three di-

mensional plot of the wavefunction, provided in Figure 4. The maximum we
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Figure 2: The wavefunction along the diagonal for the 100th iteration of the
Lanczos method.

Figure 3: The wavefunction along the axis for the 100th iteration of the Lanczos
method.
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Figure 4: The wavefunction with no disorder after 100 iterations.

mentioned earlier appears to have a circular shape, and its height appears to
decrease as 1/n. These wavefunctions are like a wavefront which is propagating
outwards at a constant speed with every sequential iteration. In the resulting
tridiagonal matrix bn = 2 and an = 0 for all n.

5 Results With Disorder

To begin the investigation of disorder, we examined the simple case of a single
impurity. We simulate a single impurity in the lattice by introducing a small
energy εi at a single site. The result of this impurity can be viewed as the scat-
tering of the wavefront shown in figure 4 off of the impurity. This is illustrated
in Figure 5. You have multiple wavefronts propagating from the source, and

Figure 5: Scattering of wavefronts off of an impurity.
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when they interact with the impurity, wavefronts of a much smaller amplitude
propagate out from the impurity with the same speed as the original wave.

It should be noted that we can see the diagonal element of the Tridiagonal
as a measure of the disorder that is caused by the impurity. When we run the
calculations with a single impurity, we find that the diagonal element an spikes
when the wavefront reaches it, and then decreases over sequential iterations, as
shown in Figure 6.

Figure 6: Result of one impurity on the diagonal element of the tridiagonal.

This helps us understand what happens when we consider the case of uniform
random disorder. In this case, at every point we have an energy εn which is
selected randomly from a finite range. When εn is selected from a small range,
we can view the disorder in the system as being caused by the sum of disorder of
each individual point. With each iteration, the wavefront propagates outwards,
encountering new disorder at each site, which is uncorrelated with the previous
disorder. Because the height of the wavefunction at the wavefront is 1/n, each
term at the wavefront contributes approximately w2/n2 to the variance of the
system, where w is the standard deviation of the energies at each site. Since
there the number of sites at the wavefront goes as n, we get that the sum of the
variance should go as

w2/n. (6)

When we carry out the calculation with εn selected from the range (−.1, .1),
we get that the diagonal element of the tridiagonal has the behavior, which is
shown in figure 8.

The variance of this function has the expected behavior, because the variance
appears to match the function we derived, as shown.
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Figure 7: Result of uniform random disorder on the diagonal element of the
tridiagonal.

6 Analysis

With our calculated tridiagonal matrix, it is possible to attempt to answer the
question of whether or not we have localization for various disorders. However,
to do this, we need to introduce the Green matrix for the tridiagonal Tm, which
is defined R(E) = (EI − Tm), and for which the corner element R1,m is the
probability of the electron jumping from the across the support of the lattice.

R(E)1,m =
∏m−1

i=1 bi
det(EI − Tm)

(7)

For extended states, m
√
R(E)1,m → 1 asm→∞. For localized states m

√
R(E)1,m →

goes to a number less than one as m→∞. The Lyapunov exponent is defined
to be λ = −ln| m

√
R(E)1,m|, or

λ = − 1
m

(
m−1∑
i=1

ln|bi| −
m∑

i=1

ln|E − Ei|), (8)

where Ei are the eigenvalues of Tm. We get the condition that for localized
states, λ approaches a number greater than zero as m → ∞, and λ → 0 as
m→∞ if the state is extended.

When we calculate the lyapunov exponent for sequential iterations, we get
figures 9-11.

The results are difficult to interpret. For instance, it is difficult to distin-
guish qualitatively between the case where disorder = .1 and the case where
disorder = 1. This is odd, because a disorder of one seems like it would be
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Figure 8: The blue points are the calculated variance from the iteration, and
the purple points describe the theoretically derived variance.

Figure 9: Lyapunov exponent for the system with disorder=.1.
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Figure 10: Lyapunov exponent for the system with disorder=1.

Figure 11: Lyapunov exponent for the system with disorder=10.
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close to the case of strong disorder, where the wavefunction should be localized.
However, if there is a distinction, it’s hard to tell. All the cases appear to be
converging to some limit, but it is difficult to tell from these results whether or
not the Lyapunov exponent is converging to zero, or a positive number.

So, in terms of answering our original question, of whether or not any amount
of disorder yields localization, we need to do more work. We have the tools to
generate the data necessary to answer the question, but we still need to find out
how we can analyze this system.
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