Monte Carlo Simulations for Future Geoneutrino Detectors

Morgan Askins University of Washington INT REU Center for Experimental Nuclear and Astrophysics 08/18/2010

Outline

- Neutrinos in geophysics
- Neutrino detection in liquid scintillator
- Proposed detector design
- Monte Carlo simulation of background signals

Geophysics – The Motivation

- 44 TW of heat dissipated by the earth
- Thermodynamic models suggest about 26 TW must be produced within the mantle
- Most likely origin of this heat: Decay chains from 238U, 232Th, and 40K
- Current estimates on abundances results up to 19 TW from U, Th, and K

Properties of Neutrinos

- Leptons with three flavor eigenstates: ν_e, ν_µ, ν_τ
- Flavor states can mix
- Fermions (spin $\frac{1}{2}$)
- Interactions mediated by the weak nuclear force
- Neutrinos have left-handed helicity
- Anti-neutrinos have right-handed helicity
- Non-zero mass differences

Geoneutrinos

- Geoneutrinos \overline{v}_e are created during β^- decays from the 238U, 232Th and 40K decay chains
- Only \overline{v}_e will make it to the earth's surface
- Three body decay will cause a spectrum of $\bar{v_e}$ energy
- Geoneutrino flux can give measurements of total 238U and 232Th within the earth (but not 40K)*

238U Decay Chain

 238U decay chain contains at least 9 β⁻decays which emit v_e

234Pa

 β^{-}

234U

230Th

226Ra

222Rn

218Po

214Pb

99.98%

238U

234Th

α

206Pb

210Pb

0.02%

210T

232Th Decay Chain

Neutrino Detection

- Liquid Scintillator produces optical photons when charged particles propogate through it
- Charged current interaction produces positron and neutron
- Positron produces scintillation light immediatly while the neutron is delayed creating a distinct signal

 $\overline{v}_e + p^+ \rightarrow n + e^+$

 e^+ produces scintillation light $e^+ + e^- \rightarrow 2 \times 0.511 \text{ MeV } \gamma$

Neutron capture on Gd produces a coincidence event at $\sim 200 \mu s$ emitting two more γs

Charge current threshold

- Mass difference in $n+e^+$ and p^+ results in a minimum energy for the $\bar{v_e} \approx 1.8 \, MeV$
- This energy threshold is greater than the \overline{v}_e energy from $K^{40} \rightarrow Ca^{40}$
- Some v
 _e from 238U
 and 232Th series are
 above this threshold

$$m_n + m_{e^+} - m_{p^+} \approx 1.8 \, MeV/c^2$$

Detector Design

- nxn array of rectangular liquid scintillator filled rods
 - Optically thick acrylic
 - Air cavity
 - Clear acrylic container
 - Liquid Scintillator
 - Photomultiplier tube (one on each rod end)

Calibration – PMT Charge

 Simulation of 1000 400nm optical photons fired at a single PMT. Total charge on the PMT is then normalized to a single photon.

Calibration – PMT Distance

 Simulation of 1000 1MeV electrons fired directly at the PMTs at various distances gives the position dependence on PMT measurements

 $y = (|(x/390)|)^{2} - (|(x/410)|)^{1.5} + (|(x/3000)|)^{12} + 107.5$

Reconstructed Position

 Position is determined based upon arrival times of the first two PMTs

Assumes:

- Spherically distributed photons
- First photons don't scatter

Reconstructed Energy

 Kinetic energy determined using PMT charge and distance calibrations in conjuct with the reconstructed position

 $Energy = \frac{Total \, Charge}{(Fitted \, photons / MeV) * (Charge / photon)}$

Energy and Charge Filter

 Cuts based upon energy and charge values are used to reduce the background levels

 $Charge Filter = \frac{Highest Total Charge in one tube}{Total Charge over all tubes}$

Results

- By applying the filter
 - 238U background is reduced by ~93%
 - 232Th background is reduced by ~86%
 - Positron signal is reduced by ~36%

Acknowledgements

- Nikolai Tolich and the entire EWI group
- Alejandro Garcia, Subhadeep Gupta and the INT REU program