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What can you learn from this experiment?
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What can you learn from this experiment?

(from weakest to strongest at 10 keV incident photons...)

‘Incoherent’ scattering:

- map momentum-space electronic wave function

- dynamics: local electronic structure, plasmons, phonons, ...
‘Elastic’ scattering:

- relative atomic placement, nearest neighbor distances, full xtal
structures...

Photoelectric processes:

- X-ray absorption spectroscopies

-fluorescence mapping

[— X-ray emission spectroscopies ]

- resonant inelastic x-ray scattering (RIXS)




An example: 3d-transition metal XES...
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(Nonresonant) Koi.: some sensitivity to valence and spin




An example: 3d-transition metal XES...

153dn core hole excited state

I | I
| K Fluorescence |

oy
nd
i
=
(S}
=
=
=

Creation [ ke

atellite Linecs |

KB, s
H.B'I- 1

Y

Haole in
valence orhital

3gn
Ground State

(Nonresonant) Kf3: Srong sensitivity to ion spin, also sensitivity to
valence (for light TM) and bonding (for heavier TM)




An example: 3d-transition metal XES...

153dn core hole excited state
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(Nonresonant) K32,5: valence band XES — probe of occupied states
near EF. Natural complement to XANES pre-edge studies




An example: 3d-transition metal XES...

153dn core hole excited state
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(Nonresonant) KB’’: ligand semicore XES — energy is a direct
fingerprint of the ligand species: useful in metalloprotien, catalysts...




What does the signal look like?
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\What about RXES/RIXS?

o Greatly suppressed broadening from core-hole
effects (what Is fundamental limit on experiment
sensitivity?)

o QOutstanding sensitivity to crystal field and

atomic configurational effects (when does the
‘valence’ of an atom In a solid mean anything?)

» Resonant enhancement of incoherent scattering
(so far, only “hard” stuff: magnons, charge
transfer excitations — we’re about to try ‘easy’
Sstuff...)



XES should be easy..

X-ray interaction with pure lead
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...but It hasn’t been easy.

e Very few hard x-ray XAS beamlines
perform ~1 eV resolution XES with any
regularity (exception: Fe Kb at DAC
facilities)

e Severe, historic underutilization of XES as a
scientific tool In Its own right and as a
complement to XAS

* The problem: the “traditional” spectrometers
are big, mechanically complex, somewhat
pricey, reguire specialized optics, etc...



August 2008: $100 “‘gadget’ beats a large XES
spectrometer for energy resolution and collection

efficiency for Mn K (Dickinson, GTS, et al, Rev
Sci Instrum 2008)



June 2010: The GU-commissioned ‘mini XS’ at the

APS 20-1D microprobe endstation.
GTS, R.A. Gordon, John Quintana, Brian Rusthoven, et al., in prep.
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 No moving parts (except sample translator).
e Small, portable, and cheap (‘box’ Is 6 inches square).
o [Variants for compatibility with DAC, fridge, etc...]



This instrument has the same net collection efficiency as the
largest “traditional’ XES spectrometers ever constructed.



Outline

measure X-ray Emission Spectra?
to (usually) Measure X-ray Emission Spectra?




Outline

measure X-ray Emission Spectra?
to (usually) Measure X-ray Emission Spectra?

lternative to the “‘usual’ way.... “short working
distance’ dispersive optics




Outline

Why measure X-ray Emission Spectra?
How to (usually) Measure X-ray Emission Spectra?

An alternative to the ‘usual’ way.... ‘short working
distance’ dispersive optics

A miniXS survey
* One crystal is all you need: U M-edge
* New results for multi-crystal instrument design

 Separation of overlapping emission lines:
V KB and Cr Ka

 F KB: DAC magnetism, Fuel Cell membranes

A truly general-purpose miniXS: 4-10 keV resonant
and nonresonant XES using 3-D printing of optics



Outline

Why measure X-ray Emission Spectra?
How to (usually) Measure X-ray Emission Spectra?

An alternative to the ‘usual’ way.... ‘short working
distance’ dispersive optics

A miniXS survey
Conclude & Future Directions

e Every XAS microprobe can easily incorporate 1-eV
resolution XES into detector suite

« All plastic spectrometers for ease of compatibility
with environmental cells

 Detector limitations: more pixels, smaller pixels =
huge collection solid angles and better energy
resolution



How do you measure
hard x-ray XES with good (to very
good) energy resolution?

Two routes™, with very similar
starting points and end-points.

1.(diced) Spherically bent crystal
analyzer
2.Multi-crystal ‘miniXS’



A Very Incomplete Historical
Survey of (usual) Hard X-ray
Spectrometer Design
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LERIX: PNC-XOR, sector 20 APS
(Tim Fister, GTS, et al, Rev. Sci. Inst. 2006)
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g-dependent nonresonant IXS
19 Spherically-bent Si 111 wafers

Total solid angle for 19 SBCA is ~1.2% of 4 sr
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From: J.A. Bradley, GTS, G.
Cooper, A. Hitchcock, M. Vos, et
al, PRL 2010

e Comparison of nonresonant IXS
and EELS for N2 gas

*Extreme divergence of results
when leaving the dipole scattering
limit

e Direct evidence for violation of
first Born approximation in g-
dependent EELS, even for high
(multi-keV) beam energies



L ERIX-2 design progress...

180 analyzers.... Working on several different strategies for
detector configurations




Diced, Curved Analyzers (19867?)
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Unlike older bent-crystal analyzers, the top surface of the “‘cube’ crystal
elements is unstrained->very high energy resolution.



“Dispersion Compensation”
(S. Huotarl, et al, JSR 2005 & RSI 2006)

* Energy resolution Is
(nearly) determined by
unstrained, Intrinsic
response of diffracting
material

* Energy bandpass on focal
plane Is determined by size
of diced elements

| Allows high resolution
with much shorter working
distance—>vastly larger
collection solid angle.

Incident Hf'
X—rays
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Square focus
with an energy
gradient

Scattered

Diced analyzer
consisting of
small flat crystals
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“Dispersion Compensation”
(S. Huotarl, et al, JSR 2005 & RSI 2006)

‘magic’ ray-tracing
Zero-noise camera
small spot size

Resulting (smallish)
energy range iIs OK fit
with many (most) very
high resolution
experiments: you never
want super-high energy
resolution over a large
energy transfer range
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A “convergent” evolution

s

Flat xtal
Spectrometer,
Large Source

Size,
One-pixel
detector

Flat xtal
Spectrometer,
focused beam,

Zero-noise camera

(and nice

software...)

Many identical Flat xtal
Spectrometer, focused
beam, zero-noise camera

and Exact dispersion
compensation



«4/2010 at 20-1D
10 SBCA equiv

5.5 cm diameter
Rowland circle

*RA Gordon and TK
Sham: studies of
mixed valent Ce
compounds

*Resolution <0.8 eV
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Spectrometer calibration

4790 eVl




Spectrometer calibration
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CeF; La XES exposure

4 minute expose

500k counts In Lal, 2M counts In entire
energy range




CePd3
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\WWe’ve made an easy experiment easy.

Huge range of applications:

Actinide science: new look at charge transfer excitations

Basic QM: what does ‘multiconfig’” mean for f-electron
materials?

Basic CM science: metal insulator transition ‘intrinsic’
or ‘percolative’?

Biophysics: time resolved studies of photosynthesis

Biophysics: what Is bonded to the metal site In
metalloprotiens?

Battery research: charge transfer upon lithiation
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