Center for Experimental Nuclear and Particle Astrophysics

Faculty: Doe, Enomoto, Heckel, Garcia, Gundlach, Hertzog, Miller, Robertson, Rosenberg, Tolich, Trainor

Themes:

Searches for Axions, Gravity, Neutrinos, NuclearAstro, Tests of symmetries in β decay, Reltivst. Heavy Ion Colls. General thread: precision experiments to search for signatures of new physics

Example 1: Breaking of CPT symmetry and searching for extra dimens. using torsion pendula.

Example 2: Are Neutrinos identical to Anti-neutrinos? Majorana

Example 3: Searching for axions in an electromagnetic cavity

Example 4: Cooking of elements in stars: Nuclear astrophysics.

Example 5: Using Ultra-Cold Neutrons to search for new physics

How good is CPT symmetry?

Kostelecky's et al.'s preferred-frame approach

•imagine that vector and axial-vector fields were spontaneously generated in the early universe and then inflated to large extents.

•particles couple to these preferred-frame fields in Lorentz-invariant manners.

•this "Standard Model Extension" predicts new observables many of which violate CPT. One observable is $E = \sigma_e \cdot \tilde{b}_e$ where \tilde{b}_e is fixed in inertial space - its benchmark value is $m_e^2 / M_{Planck} \approx 2 \times 10^{-17}$ eV.

•the spin pendulum can test if electrons tend to precess about an arbitrary direction in inertial space.

the Eöt-Wash spin pendulum

- 10²³ polarized electrons
- negligible mass asymmetry
- negligible composition asymmetry
- flux of B confined within octagons
- negligible external B field
- Alnico: all B comes from electron spin: spins point <u>opposite</u> to B
- SmCo₅: Sm 3⁺ ion has spin pointing <u>along</u> total B and its spin B field is nearly canceled by its orbital B field--so B of SmCo₅ comes almost entirely from the Co's electron spins
 - Therefore the spins of Alnico and Co cancel and pendulum's net spin comes from the Sm and

 $\mathsf{J}\,=\,-\,\,\mathsf{S}$

measuring the stray magnetic field of the spin pendulum

some "gee-whiz" numbers

- typical torque in our 42-hole experiments is ~ 1fNm with statistical uncertainty of ~0.006 fN-m
- corresponds to a force ~(40±0.24) fN
- get an idea how small this is by cutting postage stamp into 10¹² equal pieces
- typical force is 60 times the weight of 1 of those pieces
- typical statistical error is ~1/3 the weight of 1 piece

Double- beta decay: Majorana experiment

 $0\nu\beta\beta$ -decay probes fundamental physics:

- •Only technique to determine if v = anti-v
- If so, $0\nu\beta\beta$ offers the most promising method for determining the overall absolute neutrino mass scale.
- •Tests one of nature's most fundamental symmetries, lepton number conservation.

Majorana Collaboration is proposing to build a next-generation, 76Ge based experiment.

Based on 60 kg modules, each containing 57 segmented, n-type, 86% enriched 76Ge crystals

Scalable, with independent, ultra-clean, electroformed Cu cryostat modules

Expected Sensitivity (0.46 t-y of 76Ge exposure)

T1/2 >= 5.5 x 1026 y (90% CL) corresponding to $< m_V > < 100 \text{ meV}$

Other v experiments at CENPA

SNO (solar neutrinos)

Katrin (v mass)

SNO

KATRIN

Searches for Axions

Dark energy (identity unknown) 73%

Dark matter (identity unknown) 23%

Other nonluminous components

intergalactic gas 3.6% neutrinos 0.1% supermassive BHs 0.04%

Luminous matter

stars and luminous gas 0.4% radiation 0.005%

The axion mass range is scanned by tuning the cavity Resonance condition: $h_V = m_a c^2 [1 + O(\beta^2 \sim 10^{-6})]$ Signal power: $P \propto (B^2 V Q_{cav})(g^2 m_a \rho_a) \sim 10^{-23}$ watts There may be fine structure in the axion signal

Nuclear Astrophysics at CENPA

1) Precision measurements of key reactions in the solar p-p chain that produce solar neutrinos.

2) Why isn't ²²Na a good tracer of novae explosions? Is it destroyed by fusion with protons?

Chamber view for p + ⁷Be fusion

Weak decays in the Standard Model

Weak Interactions in the Nucleus ("the 0.7% problem")

Presentation to REU Students July 2010

Summary

Non-VA forces in weak decays

→Measure e-v correlation
→Searches for scalar currents in 32Ar
→Searches for tensor currents in 6He

Non-VA currents in Weak decays

Non-VA currents in Weak decays

A trick to avoid detecting the neutrino

A trick to avoid detecting the neutrino

A trick to avoid detecting the neutrino

In $0^+ \rightarrow 0^+$ nuclear β decay: $H = G_W / \sqrt{2} (H_S^+ H_V)$

Consequences for couplings

Searching for tensor currents in 6He

Magneto-Optical Trap

- Six orthogonal, counterpropagating beams of opposite circular polarization are red-detuned as in the Doppler cooling configuration
- Anti-Helmholtz coils introduce a quadrupole field with zero magnetic field at the center and linearly increasing field in the directions of the lasers

Production of 6He at CENPA

Production of 6He at CENPA

Works out very well!

Seconds

