Particle Theory in the age of the LHC

Ann Nelson University of Washington July 29, 2009

What the LHC does

- Collides 5-7 TeV proton beams, total energy -10-14 TeV
- E=mc²
- Energy converted to many massive particles
- Detectors record properties. Any new kinds?

An excellent start: first beams – September 10, 2008

The Event on 19. Sep 2008

- the present understanding
- ongoing repair work
- plans for 2009

a quench of about 100 superconducting magnets, that heated up as much as 100 C. About one ton of liquid helium leaked out, causing about 100 of the supercooled electromagnets to heat up and fail.

Results of Accident

The CERN Management today confirmed the restart schedule for the Large Hadron Collider resulting from the recommendations from the Chamonix workshop. The new schedule foresees first beams in the LHC at the end of September this year, with collisions following in late October. A short technical stop has also been foreseen over the Christmas period. The LHC will then run through to autumn next year, ensuring that the experiments have adequate data to carry out their first new physics analyses and have results to announce in 2010. The new schedule also permits the possible collisions of lead ions in 2010.

This new schedule represents a delay of 6 weeks with respect to the previous schedule which foresaw LHC "cold at the beginning of July". The cause of this delay is due to several factors such as implementation of a new enhanced protection system for the busbar and magnet splices, installation of new pressure relief valves to reduce the collateral damage in case of a repeat incident, application of more stringent safety constraints, and scheduling constraints associated with helium transfer and storage.

In Chamonix there was consensus among all the technical specialists that the new schedule is tight but realistic.

Purpose of LHC

- Make discoveries beyond Standard Model of Particle Physics
- What is the Standard Model?

The Standard Model of Particle Physics

(i) Building blocks of matter: Quarks and Leptons

In comparison: m (p) = 0.938 GeV/c²

Colloquium, University of Washington, Seattle, January 2009

K. Jakobs

(ii) Forces / Interactions:

mediated via the exchange of field quanta /bosons

 $m_{\gamma} = 0, \qquad m_{q} = 0$

Mw	= 80.398	±	0.025	GeV / c ²
M _Z	= 91.1875	±	0.0021	GeV / c ²

(iii) Higgs sector

New (scalar) field is introduced; Needed to break (hide) the electroweak symmetry

⇒ Higgs particle

Theoretical arguments: $m_H < \sim 1000 \text{ GeV/c}^2$

Theoretical description: Gauge theories of electroweak and **Strong interactions** (i) Electroweak theory S. Glashow A. Salam S. Weinberg (ii) Quantum Chromodynamics D.J. Gross H.D. Politzer F.E. Wilcek

Problem: symmetry requires massless gauge bosons

SM theoretical inputs

All interactions are local

Quantum mechanics is correct, at least up to energy scales > 1 TeV (length scales down to 10⁻¹⁷ cm)
Special relativity (actually 4d Poincare invariance) is correct on these same scales

these assumptions imply that particle physics is completely described by (effective) **quantum field theory** SM theoretical inputs (II)
There are gauge forces, mediated by exchanges of gauge bosons
The gauge group is SU(3) c×SU(2)w×U(1)Y

 $SU(3) \simeq SU(2) = SU(3) \simeq SU(3) \simeq SU(3) \simeq SU(3) \simeq SU(3) \simeq SU(2) = SU(3) \simeq SU(3$

Higgs is origin of mass for Weak bosons,quarks, leptonsGravity is ignored

Why go Beyond the Standard Model?

theorists engage in two types of activity:

- playing around with new/old/stolen ideas for going beyond the standard paradigm (easy, fun, richly rewarded, but potentially useless)
- calculating things within the standard paradigm (useful, but difficult, tedious, and poorly rewarded)

Evidence for BSM is overwhelming

• Triviality of SM • Gravity, • Inflation, • Baryons, • Dark Matter, • Neutrino Mass, Accelerating Universe ... but weird and hard

the importance of mystery

one cannot help but be in awe when he contemplates the mysteries of eternity, of life, of the marvelous structure of reality. It is enough if one tries merely to comprehend a little of this mystery every day.

A. Einstein

status of theories beyond the standard model

- The BSM models were created by man
- They evolved
- They rebelled
- There are many copies
- And they have a plan

Robust Elegant Multifunctional not fine-tuned viable

What model builders aim for

Typical BSM model

barely viable, fine-tuning reduced at cost of additional structure

"Alive, but looking good?"

Guidance from String Theory

• Chasing Einstein's dream: "NATURE IS CONSTITUTED SO THAT IT IS POSSIBLE TO LAY DOWN SUCH STRONG DETERMINED LAWS THAT WITHIN THESE LAWS ONLY KATIONALLY COMPLETELY DETERMINED CONSTANTS OCCUR, NOT CONSTANTS THEREFORE THAT COULD BE CHANGED WITHOUT COMPLETELY DESTROYING THE THEORY."

in string theory

electrons, quarks, photons, gravitons, neutrinos, etc are all different vibrations of one kind of microscopic string: the superstring

Implications

STRING THEORY SUMMARIZED: I JUST HAD AN AWESOME IDEA. SUPPOSE ALL MATTER AND ENERGY IS MADE OF TINY, VIBRATING "STRINGS." OKAY. WHAT WOULD THAT IMPLY? 1 DUNNO.

Predictions from Strings?

Yes! New Dimensions, SUSY,Branes, New forces, lots of new scalars

"String theory is often called the "Theory of Everything" (TOE). However, since so far it makes no predictions observed by experiment, a better name might be the

"Theory of Everything Not Appearing in Laboratories" (TOENAIL)."-W. Siegel

String Theory Finally makes a viable prediction

The Anthropic Landscape!

• (maybe finetuning is ok)

Answers from Experiment

• LHC may discover

- Supersymmetry
- Xtra Dimensions
- Dark Matter
- "Unparticles"
- ????

the universe: traditional view

you are here

the universe: a bigger view

extra dimensions of space

everything we know about is on this slice

the rest is terra incognita

60

you have to sift through trillions of "events"

to find the rare events that have new particles or new physics

700 megabytes of data every second

the importance of Standard Model calculations

- the SM still rules (almost) all
- below the energy frontier, new physics means (mostly) rare processes, small discrepancies, small inconsistencies
- at the energy frontier, SM backgrounds are about to get 100-500 times worse (Steve Mrenna)

past 30 years: theorists busy extending sm (on paper)

	UNERATION - WARK UP	
KECAP - LR MODEL	OMPORTION - WARPI OP	
5U(3), × 5U(2), × 5U(2), × U(1) B-L	SU(3) > SU(2) × U(1)	
$\phi_1(1, 2, 2, 0)$	{ FOR CHA	
$\Delta_{i}(1, 3, 1, +2)$	8 securators (Gelline Mathice) QUA	
4:(1, 1, 3, +2)		
Adoptat Rep	$T_{f} = \frac{1}{2} \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \end{bmatrix} = \frac{1}{2} \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \end{bmatrix}$	
How Does A transform under SURDEX UCIDA,?	(4)	
	(SURD) UDEMALIZED SO TO TATO =	
W-s II bi		
in the w	$\Psi = \left(\begin{array}{c} \lambda \\ \lambda \end{array} \right)$	
Inf> (1+ 55x 72)4	Ke /	
$S \Psi = i S \propto F \Psi$	The for and question	
ϕ^{in} (ϕ, ϕ^{\dagger})	adjoint, Stearing SUB) -> SUB) XU(1)	
(\$ \$°); \$ > \$ \$ U. \$'	4 with < \$ >= (-1/2,) = \$ \$ \$ > UBU	
· perta	+4+57,3,8 /0	
If. 5\$ = \$ 22" (i San)	$bbt l^k = k \pi \cdot (r_{10} \pi_{0} \pi)^k$	
$\Lambda^{\mathbf{E}_{\mathbf{E}}_{\mathbf{E}_{E}_{\mathbf{E}}_{\mathbf{E}_{\mathbf{E}_{E}_{E}_{E}_{E}_{E}_{E}_{E}_E}_E}}}}}}}}$	(DI) = Trige + year, #11	
4 (4 4/a); A ~ UAU	A = (w.B.'r) -> => q2 Tr [T2, T2] A2	
- (- (4) Summer (1 - () - ()	The Charles I	
54° = 154° 102 A*7	4+4,56,7 p	
UDEO UNDA ACO OTOSZAC	WHAT ARE THE RESOLUTING	
δΔ° = iA2Δ°	L L + W = D/ (20 H HOW)	
What is left unbroken if	(cok at 10.00 cr + DPLY)	
(A"> (")) (is what leaves Va invar.)	(ox + igs in)	
	look & We Br	
SA= · Sato A' -iSx A' 08 + i SB2A	at & in interval	
last at x=3	(J. + 195 2 W/ + 13(2)	
= $i S \alpha' / \frac{1}{2} = i S \alpha' / \frac{1}{2} = i S \alpha' / \frac{1}{2} = i S \beta' / $	$\sin^2 \Theta w = \frac{g^2}{a^2 - \sigma^2}$	
	977 23:35-9	
= 1 (BB-SA)V, 0) 1/ - B-L	2 33/3 = 1 9,293	

Beyond the Standard Model Theory

- Predicts new kinds of particles
- or even "unparticles"
- New symmetries, principles, effects

Landscape of known and unknown unknowns **BSM** at LHC modified Energy gravity and hidden sectors? Standard Model new forces? Many models Few Constraints Gravity Stronger coupling to Standard Model

Hints (or red herrings) from the sky?

FIG. 3: **PAMELA positron fraction with other experimental data.** The positron fraction measured by the PAMELA experiment compared with other recent experimental data[24, 29, 30, 31, 32, 33, 34, 35]. One standard deviation error bars are shown. If not visible, they lie inside the data points.

measurements of positrons + electrons

FIG. 3: (color) The Fermi LAT CR electron spectrum (red filled circles). Systematic errors are shown by the gray band. The two-headed arrow in the top-right corner of the figure gives size and direction of the rigid shift of the spectrum implied by a shift of $^{+5\%}_{-10\%}$ of the absolute energy, corresponding to the present estimate of the uncertainty of the LAT energy scale. Other high-energy measurements and a conventional diffusive model [1] are shown.

WIMP Annihilation via intermediate light boson

Focus of Theoretical Physics in the age of the dawn of the LHC

- Doing useful, challenging Standard Model calculations
- thinking of new LHC signatures
- thinking of new ways to analyze LHC data and organize/present results to find new physics
- pursuing nonaccelerator anomalies: dark matter, neutrino oscillations, dark energy

1-2 years from now (hopefully)

- Theorists will be busy comparing new physics models against LHC data
- Certain to be multiple explanations for any anomaly
- Having a blast.