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My main project was to solve a problem that would describe the interac-
tion of a two particle system of a quantum gas in the unitary limit. When
interacting, gases of particles in the unitary limit have a single bound state
of zero energy in free space. My project was to determine the interaction
that could be used to describe the case of a system of two such particles for
an effective reduced basis set of harmonic oscillator eigenstates of arbitrary
size. The problem in the unitary limit would be useful for solving problems
for particles in high potentials that are very weakly bound. Before my main
project, I learned the basic idea of what an effective theory is. An effective
theory is a low energy model for a potential energy involving high energy
physics that we can’t see. A wave function cannot be sensitive to a potential
that acts over a width much smaller than its wavelength, so the low en-
ergy solutions to the Schrodinger equation for a given potential whose wave
functions are very broad compared to the range at which the details of the
potential operate will not be very much affected and therefore we can find
accurate solutions to the problem in perturbation theory. If we dont know
exactly what the potential looks like, we can treat the unknown short range
potential as a perturbation of the long range potential with parameters to
be fit to agree exactly with the lowest energy measurements. Then we can
apply these parameters to higher energies to provide a good approximation
within a certain energy range.

In first order perturbation theory, the energy shift from the perturbing
potential V(r) is given by

∫
| Ψ(r) |2 V (r)Ψ(r)d3r. If the unperturbed energy

is smooth, we can expand the wave function in a Taylor series around the
origin where the integral becomes∫ (
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which means that the perturbing potential within the integral over the po-
sition space essentially acts like a linear combination of a delta function and
its derivatives, ie, picking out the values of the successive derivatives at the
origin, each one weighted by a strength determined by the evaluation of each
integral this action is multiplied by. Following the idea that the true per-
turbing potential acts like an infinite linear combination of delta function
derivatives, in our effective theory we can approximate the perturbing po-
tential as such, but only keep a finite number of terms. We do not know the
potential so we do not know the constants in front of the delta function, but
if we decide to only include a finite number of terms we can determine an
approximation to them by requiring that they are consistent with the low
energy measurements.

A simple example that I explored to illustrate this point was an infinite
square well with a small square well cut out of it in the middle. We knew
the unperturbed potential (infinite square well) with energies E

(0)
N and wave

function Ψ
(0)
N . Suppose I wanted to use m terms. Then I would approximate

the energy shift from the perturbing potential by

E
(1)
N =

m∑
n=0

an
dn

drn
| Ψ(r) |r=0 .

Then one would choose coefficients so that the correction for the lowest energy
produces the exact experimental results for E1 up to Em. For example in
the case of the perturbed well, we use the first two nonzero terms a0 and
a2. One would demand E2 − E(0)

2 = a0 | Ψ(0)
2 (r) |2|r=0 +a2

d2

dr2 | Ψ(0)
2 (r) |r=0 .

and E1 − E(0)
1 = ao | Ψ(0)

1 (r) |2|(r=0 +a2
d2

dr2 | Ψ(0)
1 (r) |2|r=0 . Then one would

solve for a0 and a2 and apply the resulting potential to determine the energy
corrections for all higher states. As a result, one would find that as more
terms are added, the error between the true energy and the energy given
by first order perturbation theory decreases for the higher states within a
certain range. At significantly higher energies, the wave function becomes
more oscillatory and the higher order terms in the expansion become more
important. Eventually, the answer starts off very inaccurate and one does
not converge on the right answer no matter how many more correction terms
are added. In other words, the situation is non-perturbative. The wave
function can probe the details of the potential which make a difference in its
structure; treating the details as a perturbation is not adequate to describe
the solutions.
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After I understood the idea of an effective theory, I moved on to my main
project. I worked on a problem that would be useful for people dealing with
situations in nuclear physics that involve particles in high potentials which
are very weakly bound. My problem dealt with the case of a quantum gas in
the unitary limit, in which two particles interact through a sharp potential
and have a single bound state of zero energy in free space. Eventually the aim
was to solve the eigenvalue problem for the particles in a harmonic trap. This
problem would be most naturally solved in the basis of harmonic oscillator
eigenstates. But we cannot use all the states. This is where the idea of an
effective theory comes in: we must find an expression for the parameter of
the potential that gives a unitary quantum gas for an arbitrary cutoff number
of states in that basis. Therefore, I had to substitute the Hamiltonian for
a unitary gas in free space into the eigenvalue problem setting E=0 for an
arbitrarily sized reduced basis of harmonic oscillator eigenstates and solve for
a to determine its dependence on the basis. the value of a giving approximate
the interaction, up to a certain scale which we defined, as being a fuzzy delta
function. More specifically, we defined the interaction by:

〈N ′ | aδ(r) | N〉 = aΨN ′(r)ΨN(r) |r=0, (2)

if N ′ and N are less than or equal to Λ, and 0 if one of them is greater than
Λ, where Λ is a cutoff wavelength. It is therefore said to be a fuzzy delta
function because it only operates between basis eigenstates up to a certain
scale. We cannot use a true delta function, the particles would not interact
at all because to do so they would have to occupy the same exact point in
space which is impossible. Using a delta function means that contribution
to the potential energys action on the matrix elements N,l,m, H N,l,m is
zero for all but the matrix elements within our range of N=0 to Lambda in
which the Hamiltonian is between s states, ie, l and m are both zero. This
is because a delta function takes the product of the product of the bra and
ket wavefunction at the origin, and only s waves have a nonzero value at the
origin. If one set up the complete Hamiltonian for the eigenvalue problem
that sets E=0, grouping the states together by values of angular momentum,
and looked at the resulting matrix, one would also find that the kinetic
energy operator only produces a nonzero value for a given matrix element
when acting between two states which have the same angular momentum.
This is because the angular dependence of the states is expressed by a single
spherical harmonic, and hence is an eigenstate of the kinetic energy operator,
so the matrix elements will be nonzero only if the two spherical harmonics
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are the same, and for this to occur the angular momentum must be the
same. So if we look at the Hamiltonian for Hunitary, we see that there is
only an interaction between states that have the same angular momentum.
The Hamiltonian can be expressed as Ĥs + Ĥp + Ĥd + where Ĥs produces a
0 matrix element when not acting between two s states, and likewise for the
other values of angular momentum. Therefore we must have

Ĥs | Ψs〉 = E | Ψs〉

Ĥp | Ψp〉 = E | Ψp〉

where | Ψ〉 =| Ψs〉+ | Ψp〉+ | Ψd〉 + and the eigenvalues and eigenstates are
determined that way as being states made up of linear combinations of states
of the same angular momentum. The form of this matrix is advantageous
because it means that all we have to do to determine the a giving E=0 is
to solve Ĥs | Ψs〉 = 0. S states have m=0, so we can label them uniquely

by their principle quantum number, N, where E =
(
N + 3

2

)
h̄ω. From the

form of the solution to the eigenvalue problem, N = 2nr + l, where nr is
the number of nodes in the radial wave function. Since we are only using s
states, l=0 for all states, and N is an even integer. Our basis includes states
N=0 up to N = Λ, the cutoff value of N in our basis. Once I solved this
problem and obtained the interaction that accommodates a certain choice
of basis., I could put the particles in a harmonic trap, the problem could
be more easily solved. The matrix would be diagonal everywhere except for
where the Hamiltonian acts between two s states, and we would just have
to diagonalize this part of the Hamiltonian. We must account for the fact
that it is not true that if we include the wavefunction as a linear combina-
tion of a high number of basis harmonic oscillator eigenfunctions that we
will converge on the right answer for the wave function of this gas. This is
because the wavefunction of a particle that is just barely bound is able to
extend all the way out of the potential well. The higher the energy of the
states we include in the linear combination, the broader the wavefunction,
but after a certain point, each wavefunction dies off exponentially. Also, the
actual wavefunction builds up more and more inside the well. The higher
the energy states we use, the higher the corrections are needed. The uni-
tary limit is an a limiting case of very small binding energy, and we cannot
converge on the right answer to this problem no matter how many states
we include in the basis. However, there is a way to get the exact answer
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in which we use the Bloch-Horowitz equation: This equation gives the ef-
fective Hamiltonian that we must use in order to get the same value for the
energy that we would get with the true Hamiltonian. The Bloch-Horowitz
equation is given by: P̂

(
Ĥ + ĤQ̂ 1

E−Q̂Ĥ
Q̂Ĥ

)
P̂ | Ψ〉 = EP̂ | Ψ〉. Where P̂ is

the projection of the complete basis onto the space, and Q̂ is the projection
of the complete basis that lies outside the space. So instead of applying the
operator H between each of the matrix elements from our reduced basis, we
apply the effective Hamiltonian Ĥeff = Ĥ + ĤQ̂ 1

E−Q̂Ĥ
Q̂Ĥ. The uncorrected

matrix elements 〈ı | Ĥ | j〉 of the free space Hamiltonian for a unitary gas is

given by 〈i | h̄2

2m
∇2 + aΛδ(r) | j〉. We will correct for the fact that we only

use a reduced basis using the correction ĤQ̂ 1
−Q̂Ĥ

Q̂Ĥ. It can be shown that

applying the kinetic energy operator to a state | N〉 we obtain − h̄2

2m
∇2 | N〉 =

− h̄ω
2

(√
N
2

(
N+1

2

)
| N − 2〉+

(
N + 3

2

)
| N〉+

√(
N
2

+ 1
) (

N
2

+ 3
2

)
| N + 2〉

)
The

kinetic energy operator therefore only takes a ket outside the space if N = Λ.
Looking at the Bloch-Horowitz correction, we can see that the correction be-
comes zero unless both i and j equal Λ. The correction to the top matrix
element can be shown to equal h̄ω

2

(
N
2

+ 1
)
. My advisor showed this result

in an earlier paper; it was not straightforward to evaluate and I did not
have time to learn how to do it myself. Using this top corner matrix correc-
tion, I found the form of the Hamiltonian matrix elements for the eigenvalue
problem and set the determinant equal to zero to find aΛ. Although the
matrix could be arbitrarily large, it could be manipulated by adding multi-
ples of rows or columns to other rows or columns to get it into a simplified
form for which the determinant could be more easily evaluated. The result
was aΛ = 1∑j=[ Λ

4 ]

j=0

Γ Λ
2 −2j+ 1

2

(Λ
2 −2j)!

where [Λ
4
] is the greatest integer less than or equal

to Λ
4
. Once I solved this problem, obtaining the interaction that accommo-

dates a certain choice of basis, if one the problem of putting the particles
in a harmonic trap could be much more easily solved. The matrix would be
diagonal everywhere except for where the Hamiltonian acts between two s
states, and we would just have to diagonalize this part of the Hamiltonian.
In addition, no Bloch-Horowitz correction would be needed because the op-
erator − h̄2

2m
∇2 + 1

2
mωr̂2 + aδ(r) does not take one outside the space. The

next step would be to find the relationship between aΛ and aΛ−2. This could
be done by treating the effective Hamiltonian ĤΛ using states 0 through Λ
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as the true Hamiltonian and finding the effective Hamiltonian for a matrix
that uses states 0 through Λ − 2. In this case, P̂ =

∑N=Λ−1
N=0 | N〉〈N |

and Q̂ = . | Λ〉〈N | . We break up the correction to the Hamiltonian into
two parts: one which we call the correction to the kinetic energy part of
the Hamiltonian and one which we call the correction to the delta function
part of the Hamiltonian. In the old basis the new top corner element was
〈Λ − 2 | T̂Λ | Λ − 2〉; now a correction of 〈Λ − 2 | T̂Λ | Λ − 2〉 is added.
We can then write the correction to the delta function as what remains from
the total corrected Hamiltonian if we subtract the corrected kinetic energy. I
confirmed that if we use the corrected term for 〈Λ | T̂Λ | Λ〉 given by subtract-

ing
(

Λ
2

+ 1
)

h̄ω
2

, the correction to the kinetic energy for the new top corner

matrix element is given by subtracting h̄ω
2

(
Λ
2

)
, which is consistent with the

requirement that the correction to any top corner matrix element is given
by subtracting the value for h̄ω

2

(
Λ
2

+ 1
)

of that basis. Since no matter what

the size of the basis we always use a delta function with coefficient a(A), the
result for the correction to the delta function would relate aΛ−1 to aΛ. I am
still working on the result of this relation.
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