

Time-Steps Effects on Planetesimal Dynamics

University of Washington REU
Millikin University
Advisor: Tom Quinn

Planet Formation

- * The "Planetesimal Hypothesis"
- * 4 Major Stages: Initial, Early, Middle, Late
- * Initial and Early Stages dominated by Microphysics, Electrostatics, and Gas Drag
- * Middle to Late Stages dominated by Gravitation Scattering

The Exciting Part

- * Looking at the Middle to Late Stages
- * Starting with 1 km planetesimals and watching their evolution
- * Learning the properties of lunar-sized protoplanets

Modeling Techniques

- * Prior Techniques
 - * Analytical
 - ***** Statistical
- ***** Current Techniques
 - ***** Direct Simulations

IMAGE CREATED WITH TIPSY (QUINN, KATZ)

Direct Simulations

- * How Numerical Simulations help us understand interactions
 - *** Getting Accurate Results**
- * Calculations of Gravity
 - * Runaway Growth

Making Life Easier

- * N-Body Simulations are Highly Complex
- * Spherical Objects
- ***** Perfect Accretion
- * Artificial Size Scaling

Time-Steps

- ***** Basic Time-Step
- * Multistepping
 - ** Saving Computational Time while maintaining accuracy $\Delta t_{new} = \eta(\Delta t_{min}) \sqrt{\frac{r_{1,2}^2}{(M_1 + M_2)G}}$
 - * Separating particles into bins

$$\Delta t_{min} = rac{2\pi/n}{2^{max_{rung}-1}}$$

---- MULTI-STEP
----- BASIC TIME-STEP
LARGE
----- BASIC TIME-STEP
SMALL

$$\langle e^2
angle^{1/2}=2\langle i^2
angle^{1/2}=2h$$
 $h=r_H/a$

MULTI-STEPPING

BASIC TIME-STEP

COMPUTATIONAL TIME

BASIC TIME-STEP SMALL = 1.8 WCD

BASIC TIME-STEP LARGE ≈ 54 WCD

MULTI-STEPPING = 3.1 WCD

References

- * Barnes, J., and P. Hut 1986. A hierarchical O(n log N) force-calculation algorithm. Nature 324, 446-449
- * Kokubo, E., and S. Ida 1996 On runaway growth of planetesimals. Icarus 123, 180-191.
- * Kokubo, E., and S. Ida 1998. Oligarchic growth of planetesimals. Icarus 131, 171-178.
- * Ohtsuke, K., S. Ida, Y. Nakagawa, and K. Nakazawa 1993. Planetary accretion in the solar gravitational field. In Protostars and Planets III (E.H. Levy and
- * Richardson, D. C. 1994 Tree code simulations of planetary rings. Mon. Not. R. Astron. Soc. 269, 493-511.
- * Richardson, D. C. 1995. A self-consistent numerical treatment of fractal aggregate dynamics. Icarus 115, 320-335.
- * Richardson, D. C., G. Lake, T. Quinn, J. Stadel 1998b. Direct simulation of planet formation with a million planetesimals: A progress report. Bull. Am. Astron. Soc. 30, 765.
- * Richardson, D. C., T. Quinn, J. Stadel, G. Lake. Direct Large-Scale N-Body Simulations of Planetesimal Dynamics. Icarus 143, 45-59 (2000).
- * Quinn, T. R., N. Katz, J. Stadel, and G. Lake 2000. Time stepping N-body simulations. Astrophys. J.