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Effect of Impurities in Materials

● Naively, one might expect that gradually increasing the number of 
impurities (i.e. disorder) in a material would cause a proportional decrease 
in conductivity.

● But there is no a priori reason that phase transitions will not occur.

● P. W. Anderson argued in a famous 1958 paper, for which he won the 
1977 Nobel prize, that a transition to zero conductivity occurs at a critical 
disorder at which all electron wavefunctions become localized.



  

Tight-Binding Model

● Setting: d-dimensional lattice (finite or 
infinite)
● Hamiltonian:

● Dynamics: Constant hopping 
probability h to nearest neighbor 
sites

● Disorder: Random onsite potential ϵ
r
 

chosen from uniform distribution      
[-W/2,W/2] 

● Solutions:
● Case of no disorder: Solutions are 

given by Bloch's theorem

h
ϵ
r



  

With Disorder: Localization

● “Sufficient” disorder causes eigenstates to become 
exponentially localized in space:

Questions:
● What does “sufficient” mean?
● Dependence on hamiltonian?
● Experimentally detectable?

Approaches to Study of 
Localization:
● Green's functions
● Field theory
● Numerical simulations
● Rigorous mathematics (random 
matrix theory, decay estimates on 
Green's functions)



  

Quantities of Interest
● Green's function

● In coordinate basis, gives the probability amplitude for a particle to 
move between two positions

● Localization length
● A characteristic length scale for the spatial decay of the wavefunction



  

Lanczos Algorithm
● Goldenfeld and Haydock, 2006 change to a basis of distorted extended 
waves.

● We can change to another basis by application of Lanczos algorithm:
● Iterative procedure for bringing a matrix to tridiagonal form
● Start with arbitrary vector (we choose the vector that has amplitude 1 

at the origin) |0>

● Iteratively calculate vectors |n> and matrix elements a
n
, b

n
 for the 

tridiagonal representation of the matrix or operator H



  

Properties of Lanczos
● Termination: If operator has N distinct eigenvalues, then algorithm 
truncates after N iterations in exact arithmetic (i.e. tridiagonal 
representation is insensitive to degeneracy in the original spectrum)

● Rounding errors: Accumulation of rounding errors prevents truncation 
and can produce spurious eigenvalues of the tridiagonal matrix.

● Eigenvalues: Even in presence of rounding errors, eigenvalues 
“converge” to some of the correct values.

● Form: Brings a matrix to tridiagonal form:



  

Finite Lattices
● No disorder:

● Lanczos is useless
● Tight-binding spectrum is degenerate, but Lanczos ignores 

degeneracy 

● Disorder:
● Any nonzero disorder breaks all degeneracy
● Useful as computation aid
● Can be used to calculate “mobility edge” as in Licciardello and 

Thouless, 1978



  

Infinite Lattices
● No disorder:

● Lanczos never terminates anyway
● a

n
 = 0

● b
n
 → d

● Localization length tends to infinity, as expected
● Basis vectors take form of random walk



  

Infinite Lattices
● Disorder:

● Single-site disorder:
● a

n
 → 0 (after initial increase)

● b
n
 → d (after initial perturbation)

● Disorder at all sites:
● Appears to localize all states when strong
● Weak regime is difficult to calculate since lattice size requirements 

grow
● Analytic extension of single-site disorder case?



  

Problems
● Density of States: Numerical calculation suggests that the density of 
states of the original system is different than the Lanczos-transformed 
one.

No
disorder:

W/h=6:

Correct: Lanczos:
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