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A method of transforming the tight-binding model into a basis generated by the Lanczos algorithm
for tridiagonalization of matrices is investigated as way to derive properties of Anderson localization.
The Lanczos algorithm is used analytically and numerically on finite and infinite lattices. Some
asymptotic estimates are reported and a perturbation theory approach for single-site disorder is
developed. A mobility edge on a finite lattice is computed, and numerical behavior of localized
states on the infinite lattice are investigated.

I. INTRODUCTION

Studying the mobility of electrons in materials is one of
the central themes of solid state physics. In the conven-
tional model of an ordered periodic lattice, Bloch’s the-
orem states that electron wavefunctions are spatially ex-
tended with periodic behavior. Realistic materials, how-
ever, do not conform exactly to the picture of a perfectly
ordered lattice. Näıvely, one might suppose that the in-
troduction of disorder would simply decrease the conduc-
tivity proportionally to the disorder, but this picture is
not preferable a priori to more complicated possibilities
involving phase transitions with respect to a change in
disorder. Indeed, Anderson argued in a seminal 1958 pa-
per that with a critical level of disorder, some eigenstates
on disordered lattices are spatially localized, decaying
exponentially.1 Since this initial work, a large literature
has, with mixed success, attempted to better understand
the circumstances under which localization occurs.

Various approaches have been used to study localiza-
tion including perturbation theory, field theory, and nu-
merical simulations. One recent work2 has studied local-
ization on an infinite lattice by transforming the problem
from a coordinate basis to a basis of extended wavefunc-
tions. We explore a different change of basis, commonly
used in numerical analysis, using an algorithm of Lanczos
for bringing a Hermitian matrix to tridiagonal form.3 The
advantages of this approach are that the basis is analyt-
ically simple and that basis vectors have finite support
so that numerical verification is possible. Writing the
hamiltonian in tridiagonal form has the effect of map-
ping a 2D or 3D tight-binding model onto a 1D lattice
with nearest neighbor interaction.

II. THE ANDERSON MODEL

The Anderson model is a minimal model for study-
ing phenomena on lattices: it is simple enough to
be tractable, complicated enough to contain interesting
physics, and easily extensible for modeling more realistic
situations. Consider the d-dimensional cubic lattice Zd.

Define the following hamiltonian

H = h
∑
r∈Zd

r′∈N(r)

|r〉 〈r′| +
∑
r∈Zd

εr |r〉 〈r| . (1)

The first summation is taken over all pairs of nearest
neighbor sites on the lattice, with N(r) denoting the set
of nearest neighbors: lattice sites distance 1 away from
the site r. This term represents the energy associated
with “hopping” between sites on the lattice, and the co-
efficient h is assumed to be constant over all sites. The
second term is the energy associated with each site it-
self, where the sum taken over all sites. To add disorder
to the system, we let εr be a random variable chosen
from a uniform distribution taking values on the interval
[−W/2,W/2]. With this choice, the amount of disorder
is characterized by the choice of the ratio W/h. A va-
riety of disorder distributions have been studied in the
literature, but the uniform distribution is most common
and we will restrict ourselves to the uniform case in this
paper.

In the case of no disorder, εr = 0, and the solutions to
equation (1) are simply the familiar Bloch waves

ψ(r) =
∑
r∈Zd

eik·r |r〉 .

The introduction of disorder, however, produces destruc-
tive interference that causes some eigenstates to have an
exponential envelope. With a sufficiently large disorder
term, all states may become localized. Previous work has
focused on determining the amount of disorder needed
to localize all eigenstates, but there are many conflict-
ing numerical and analytic arguments. While few re-
sults have been rigorously proven, there is mathematical
proof that strong disorder localizes all states in arbitrary
dimensions.4

One important question that arises in studying local-
ization is how to characterize a localized state as op-
posed to an extended state. The Green’s function for
the Anderson hamiltonian contains information on the
localization of states, and was one of Anderson’s origi-
nal objects of interest.5 Green’s functions have played a
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central role in the study of localization, both in the infor-
mal arguments to characterize localization in the physics
literature and in the rigorous mathematical studies of
the phenomenon. Indeed, the proof of localization by
Fröhlich, et al. relies on an estimate of the decay of the
Green’s function for a Schödinger operator with uniform
disorder, as in equation (1).4

Recall that the Green’s function for the time-
dependent Schrödinger equation, or the so-called prop-
agator, gives the probability amplitude for a particle at
a position r and time 0 to be at r′ at a time t, and it is
given by

〈r′|G(t) |r〉 = 〈r′| e−iHt/~ |r〉 .

The physical meaning of the Green’s function immedi-
ately suggests its usefulness for studying localization:
Green’s functions of localized states decay exponentially,
while those of extended states do not. Taking the Fourier
transform of the operator G(t) recasts Green’s function
into a more convenient form in terms of the energy.

G(E) =
i

~

∫ ∞

0

e−iHt/~eiEt/~dt

= (E −H)−1.

Thus, in addition to representing transition amplitudes
between sites, we see the familiar form of the Green’s
function as a solution to the homogeneous Schrödinger
equation (E −H)G(E) = 1. If we consider the position-
space representation of this object, then we obtain matrix
elements between lattice sites

G(r, r′;E) = 〈r| (E −H)−1 |r′〉 .

A simple example of Thouless,6 relevant to our appli-
cation of the Lanczos algorithm in later sections, illus-
trates one of several ways that Green’s functions can em-
ployed in localization theory. Consider a 1-dimensional
lattice with N sites. Define a hamiltonian as in equa-
tion (1), with the modification that for endpoints H0,1 =
HN,N+1 = 0 because the lattice is finite. In the position
basis, the hamiltonian takes tridiagonal form with the
random onsite energies on the diagonal and the nearest-
neighbor hopping amplitudes on the off-diagonals. If an
eigenstate is localized then it has a low probability of
passing through the entire lattice, and thus we would
expect the matrix element representing this probability,
G1N (E), to scale with the localization length. In this
special case, this matrix element is particularly easy to
calculate because G(E) is just the inverse of the matrix
E1−H, whose form we know explicitly. We can use the
cofactor expansion for the matrix inverse to obtain the
desired matrix element. For this tridiagonal matrix, we
find that

G1N (E) =
∏N−1

i=1 Vi,i+1

det(E1−H)
. (2)

It is clear from equation (2) that G1N has a simple pole
at an energy eigenvalue E = Eβ . We also have another

expression for this matrix element of the Green’s func-
tion, obtained by projecting (E −H)−1 into the energy
eigenbasis, and taking the overlaps with position states
|1〉 and |N〉,

G1N (E) =
N∑

α=1

〈1|α〉 〈α|N〉
E − Eα

. (3)

Setting equal the residues of equations (2) and (3) at
E = Eβ and taking the logarithm we find

ln |〈1|α〉 〈α|N〉| =
N−1∑
i=1

ln |Vi,i+1|−
∑
α6=β

ln |Eβ − Eα| . (4)

For extended states, we expect the amplitude 〈α|i〉 at
the ith site to be of order 1/N , and consequently equation
(4) is proportional to −2 lnN . With the ansatz an expo-
nentially localized state with maximum amplitude at the
ith site, we have 〈α|1〉 = e−λ(i−1) and 〈α|N〉 = e−λ(N−i),
where λ(E) is known as the Lyapunov exponent and
λ−1(E) is the localization length. Since λ(E) depends
on the particular random disorder terms associated with
the realization of the system being considered, it is use-
ful to average this exponent over many realizations of the
system. Doing so with equation (4), we obtain

λ−1(Eβ) = lim
N→∞

1
N

N−1∑
i=1

ln |Vi,i+1| −
∑
α6=β

ln |Eβ − Eα|

.
III. THE LANCZOS ALGORITHM

The Lanczos algorithm is an iterative technique that
brings a hermitian matrix into tridiagonal form. The
procedure produces a new basis by choosing an arbitrary
initial vector |0〉, and calculating orthogonal vectors until
the set spans the Krylov subspace generated by H and
|0〉. The initial step is given by

H |0〉 = a0 |0〉 − b0 |1〉 , (5)

and subsequent iterations for n > 1 are given by

H |n〉 = −bn−1 |n− 1〉 + an |n〉 − bn |n+ 1〉 . (6)

Requiring the basis vectors to be orthonormal, we can
calculate the coefficients an, bn, and basis vectors |n〉,

an = 〈n|H|n〉 (7)
bn = |bn−1 |n− 1〉 − an |n〉 +H |n〉| (8)

|n+ 1〉 = − 1
bn

(−bn−1 |n− 1〉 + an |n〉 −H |n〉) (9)

If carried out in exact arithmetic for a finite matrix M ,
the Lanczos procedure will terminate after r iterations,
where r is the number of distinct eigenvalues ofM . On an
infinite lattice, however, the hamiltonian does not have a
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FIG. 1: The square amplitude of the Lanczos basis vector for
n = 10.

finite number of distinct eigenvalues. Consequently, the
Lanczos algorithm will continue indefinitely.

In the situation of finite precision encountered when
numerically tridiagonalizing matrices, rounding errors
develop in the procedure. This corrupts the orthogo-
nality of the basis states. The violation of orthogonality
means that the Lanczos procedure will not necessarily
truncate after a number of iterations equal to the number
of distinct eigenvalues of the matrix. There are, however,
several ways of mitigating this problem. When rounding
errors are problematic and memory is plentiful, greater
precision can be used in the calculation or states can be
reorthogonalized using Gram-Schmidt at each iteration.
The latter, however, is quite slow and can be impractical
if a large number of iterations is needed. Since a Lanc-
zos procedure with rounding errors will not terminate,
one can also continue the iterations to produce a matrix
far larger than the original one. C. Paige demonstrated
that even with rounding errors, nearly identical eigenval-
ues of the tridiagonal matrix converge to eigenvalues of
the original matrix.7 Thus by looking for eigenvalues of
the tridiagonal matrix that are very closely bunched, one
can approximate some eigenvalues of the original matrix.
This method is biased toward extremal eigenvalues in the
spectrum, and it does not generate all eigenvalues, but
it can be useful when only some of the eigenvalues are
needed.

IV. APPLICATION OF THE LANCZOS
ALGORITHM

The Lanczos algorithm can be applied to the localiza-
tion problem both analytically and numerically. Analyt-
ically, it functions as a change of basis that simplifies a
perturbative analysis of disorder. Numerically, it is easy
to implement so that it can easily be used to check ana-
lytic arguments and as part of numerical simulations of
localization.

Goldenfeld and Haydock2 were motivated by a similar

idea, but they chose to change to a basis of distorted ex-
tended states in a so-called augmented space often used
to study electronic states of disordered alloys. Their idea
was to incorporate the disorder of the Anderson hamil-
tonian into the definition of the new basis vectors, ren-
dering the transformed hamiltonian nonrandom. Conse-
quently, the basis vectors had some randomness and had
infinite support. The obvious advantage of this approach
is that eliminating the randomness of the hamiltonian
causes its asymptotic analysis to be much more tractable.
On the other hand, since the basis vectors are extended
states with infinite support, this method cannot be nu-
merically simulated alongside the analytic work.

The Lanczos approach begins with an arbitrarily cho-
sen initial vector. While the initial vector can be arbi-
trary, the simplest choice is a vector with amplitude 1 at
the origin and amplitude 0 everywhere else. In the case
of no disorder, the Anderson hamiltonian in equation (1)
has εr = 0 and therefore an = 0 for all n in equation (5).
The hamiltonian thus represents a random walk, starting
at the origin, with equal probability of hopping to any
nearest neighbor site. For such a model, the amplitude
at a given site after n iterations, or the probability of a
particle starting at the origin to reach a given site after
n steps, is simply proportional the number of paths to
the given point divided by the total number paths. If
we wish to consider a point on the perimeter of the sup-
port of some |n〉, this amplitude takes a particularly nice
form. In order to reach the perimeter of supp |n〉 in n
iterations, the steps must all be taken in the same direc-
tion in each coordinate. In two dimensions, for example,
the amplitude on the perimeter is given by the binomial
coefficient, and for even n this attains a maximum at the
site (n/2, n/2) where

ψ(n/2, n/2) = A
n!

(n/2)!(n/2)!
= O(n−1/2),

and A is a constant of proportionality.
Analytically, we expect that the Lanczos basis vec-

tors without disorder should be peaked at points
(n/d, n/d, ..., n/d) on the perimeter of support, and that
the states should increase in perimeter like a wave moving
outward from the origin. Numerical simulation confirms
this expectation, as shown in figure 1. The introduction
of weak disorder into the hamiltonian changes the pic-
ture of figure 1 slightly, by increasing the amplitude in
the center of the region of support by random amounts.

There are several quantities of interest that can be cal-
culated numerically from this approach. We can calcu-
late, for example, the asymptotic behavior of the localiza-
tion length as introduced in the section II. Since the area
of support of the Lanczos basis vectors increases with
the number of iterations, exponentially localized states
in the position basis should be exponentially localized
in the Lanczos basis. In other words, if the amplitude
of an eigenstate decays exponentially far from the ori-
gin, then the coefficients of Lanczos basis vectors with
nonzero amplitude there–all |n〉 for n greater than some
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fixed M–should be exponentially small. This allows us
to calculate the localization length in the same way that
we calculated it in II: replace the Vi,i+1 by bn, since the
hamiltonian has been transformed to tridiagonal form.
Thus we expect

λ = lim
N→∞

1
N

N−1∑
n=1

ln |bn| −
∑
α6=n

ln |Eβ − Eα|

. (10)

The first case of interest is the case of no disorder,
for which the Lanczos basis vectors are described above.
From equation (7), the coefficients an are all equal to 0 in
the absence of disorder. Less obvious, but easy to calcu-
late is the fact that the bn converge rapidly to the dimen-
sion of the system.8 Noting these facts and the fact that
the spectrum of a d-dimensional, ordered, tight-binding
hamiltonian is E(k1, ..., kd) = 2(cos k1 + ... + cos kd), we
expect λ(E) = 0 for E ∈ [−E,E]. This agrees with
the expectation that the absence of disorder should only
produce extended states.

For the purpose of an analytic calculation, the simplest
way to introduce disorder into the system is to calculate
the behavior of the coefficients an and bn due to the pres-
ence of a single disordered site, representing an impurity,
located near the origin. This can be done perturbatively,
so that we can reuse our information on the unperturbed
basis states. We attempt to convert the new hamiltonian
to tridiagonal form by writing each matrix element as
the sum of the unperturbed matrix element with a cor-
rection. We then use the corrected matrix elements in
equation (10) to compute the localization length. The
hamiltonian in this situation is H = H0 + εH1, where
H1 = |r〉 〈r|. We divide the Lanczos basis vectors into a
sum |n〉 =

∣∣n0
〉

+ ε
∣∣n1

〉
, where

∣∣n0
〉

is the unperturbed
basis vector and

∣∣n1
〉

is the correction due to the impu-
rity. In a similar manner, we write an = a0

n + εa1
n and

bn = b0n + εb1n. We then divide the recurrence relation
into a 0th-order equation and a 1st-order equation. The
0th-order equation is identical to the unperturbed recur-
rence relation in equation (6). The 1st-order equation for
the initial vector is formally given by

H0

∣∣01
〉

+H1

∣∣00
〉

= a0
0

∣∣01
〉

+ a1
0

∣∣00
〉
− b00

∣∣11
〉
− b10

∣∣10
〉
.

We arbitrarily set |0〉 regardless of the impurity. So∣∣01
〉

= 0, and we reduce the initial equation to

H1

∣∣00
〉

= a1
0

∣∣00
〉
− b00

∣∣11
〉
− b10

∣∣10
〉
.

The general recurrence relation is given by

H0

∣∣n1
〉

+H1

∣∣n0
〉

= −b0n−1

∣∣n− 11
〉
− b1n−1

∣∣n− 10
〉

+a0
n

∣∣n1
〉

+ a1
n

∣∣n0
〉
− b0n

∣∣n+ 11
〉
− b1n

∣∣n+ 10
〉
.

After a moment of reflection on the recurrence relations,
it is clear that all corrections to the unperturbed system
vanish until the outgoing wave of the basis vectors has
nonzero overlap with the site of the impurity.

In order to calculate expressions for the a1
n, b1n, and∣∣n+ 11

〉
, we proceed in the same manner as in the unper-

turbed case, exploiting normalization and orthogonality
relations to perform the calculation. The normalization
and orthogonality relations chosen are only approximate,
but this choice simplifies the problem considerably. The
conditions that we demand are

〈n|m〉 = δnm (11)

〈
n0|m0

〉
= δnm. (12)

By substituting
∣∣n0

〉
+ ε

∣∣n1
〉

into equation (11), using
equation (12), and carrying the result to first order, we
obtain 〈

n1|n0
〉

+
〈
n0|n1

〉
= 0

〈
n1|m0

〉
+

〈
n0|m1

〉
= 0 for n 6= m.

Since all entries of |n〉 are real, we deduce〈
n1|n0

〉
= 0, (13)

and we record〈
n1|m0

〉
= −

〈
n0|m1

〉
for n 6= m. (14)

Taking inner products between the general recurrence re-
lations and the proper choice of vectors, and then apply-
ing equations (13) and (14), we find that

a1
0 =

〈
00

∣∣H1

∣∣00
〉
,

b10 = 0,∣∣11
〉

= 1
b00

(
a1
0

∣∣00
〉
−H1

∣∣00
〉)
.

In the general recurrence relation, we have

a1
n =

〈
n0

∣∣H0

∣∣n1
〉

+
〈
n0

∣∣H1

∣∣n0
〉

+ b0n−1

〈
n0|n− 11

〉
+b0n

〈
n0|n+ 11

〉
,

b1n = −
〈
n+ 10

∣∣H0

∣∣n1
〉
−

〈
n+ 10

∣∣H1

∣∣n0
〉

−b0n−1

〈
n+ 10|n− 11

〉
+ a0

n

〈
n+ 10|n1

〉
,∣∣n+ 11

〉
= 1

b0n
(−b0n−1

∣∣n− 11
〉
− b1n−1

∣∣n− 10
〉

+ a0
n

∣∣n1
〉

+a1
n

∣∣n0
〉
− b1n

∣∣n+ 10
〉
−H0

∣∣n1
〉
−H1

∣∣n0
〉
).

Although it is not immediately obvious from the form
of the recurrence relations, numerical calculation to be
discussed in the next section shows that in this approxi-
mation we actually have b1n = 0 for all n. In this setting,
the localization length for the perturbed system in the
Lanczos basis becomes

λ′−1(Eβ) = lim
N→∞

1
N

N−1∑
i=1

ln |b0i | −
∑
α6=β

ln |Eβ − E′α|

,
(15)
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where the prime indicates that we are considering the
perturbed system. To obtain the perturbed localization
length completely in terms of unperturbed quantities, we
need to calculate the perturbed energy eigenvalues. To
do this, note that the tridiagonal form of the perturbed
hamiltonian is

H ′ = H0 + εV, (16)

where V is a diagonal matrix with entries of an on the di-
agonal. Calculating the energy shift from 1st-order per-
turbation theory is thus trivial. If |ψn〉 are the energy
eigenvectors with coefficients cn in the Lanczos basis,
then the energy shift is

E′α − Eα = ε 〈ψn|V |ψn〉
= ε

∑
n

|cn|2 Vnn.

All the variables in equation (15) for the perturbed
localization length are now determined in terms of the
unperturbed quantities. It is far from clear, however,
where to proceed analytically from here. While equa-
tion (15) can be calculated numerically, it is quite dif-
ficult to determine the limiting behavior of the an and
bn from analytic arguments. Moreover, taking the nec-
essary limit requires knowledge of the density of states,
and integrating against a logarithm. While the densities
of states for the 1D and 2D ordered tight-binding mod-
els are known, the Lanczos algorithm does not map the
2D tight-binding model onto an exact 1D tight-binding
model because of the oscillation in the bn. Moreover,
integrating the density of states against a logarithm is
tricky because of singularities in 1D and 2D expressions.

V. NUMERICAL STUDIES

In parallel with the analytic calculations, a variety of
numerical studies were performed on both finite and in-
finite lattices. All results discussed here were performed
in 2 dimensions. Calculations were performed in Mathe-
matica using machine-precision arithmetic with 15.9546
significant figures on a 2GHz Core Duo MacBook run-
ning Mac OS 10.5.8. Mathematica carries out inter-
nal calculations with 50 significant figures, and it uses
a large number of optimization schemes. These features
of Mathematica increase the effective precision beyond
the reported machine-precision.

The primary disadvantage of the Lanczos method, is
the accumulation of rounding errors discussed earlier.
Our experience and the experience of others suggest that
the size of rounding errors with the Lanczos method can
range from negligible9 to very large10, depending on the
particular form of the Hamiltonian and the number of
iterations used. With no disorder, the maximum overlap
between Lanczos basis states produced by 80 iterations of
the procedure was about 3.1·10−15. Other situations had
worse rounding errors, but the precision of the arithmetic

in Mathematica was increased when necessary to main-
tain a maximum overlap of order 10−5 or less between
states that were supposed to be orthogonal.

In the infinite case, simulations were initially per-
formed in the absence of disorder. As expected in the
previous section, an = 0, bn → d rapidly, and the ba-
sis vectors appeared as outgoing waves from the origin.
Moreover, direct calculation indicates that λ(E) → 0,
albeit at a somewhat slow rate of convergence. Unfortu-
nately, an analytic calculation of the localization length
is extremely difficult since the density of states in two di-
mensions is an complete elliptic integral of the first kind.

There are two ways to proceed with the addition of
disorder. Disorder can be added at a single site, or at all
sites. While it was hoped that the convergence of energy
eigenvalues would provide a criterion for the localization
of states, this method turns out to be infeasible.

Nevertheless, at least some localized eigenvalues do
converge for another reason. Since the Lanczos basis vec-
tors have the property that their support increases in size
with the number of iterations, and since localized states
have an exponentially small contribution from sites far
from the origin, localized states should have small con-
tribution from Lanczos basis vectors for large values of
n. In other words, states localized in the coordinate ba-
sis should be localized in the Lanczos basis. In practice,
this does not always occur for localized states, or at least
localization lengths in the Lanczos basis tend to be much
longer than in the position basis. Although some eigen-
values do converge near the band edge, the eigenvalues
in the center of the energy band take much longer to
converge if they converge at all. The question of conver-
gence is also complicated by the fact that new eigenval-
ues are introduced as the number of iterations increases,
so it is difficult to numerically separate genuine conver-
gence from random lingering of an eigenvalue around a
newly introduced eigenvalue. In short, this behavior is
not well-understood, and it is not clear that it is useful
as a localization criterion.

With disorder at a single site and using the pertur-
bative approximation scheme discussed in the previous
section, the corrections b1n = 0 for all n. The corrections
a1

n gradually converge to 0 after the basis vectors cross
the site of the impurity. The convergence of the a1

n is
show in figure 2.

Numerical simulations were also performed on finite
lattices with periodic boundary conditions to determine
the behavior of the unperturbed basis vectors and to re-
produce an earlier study calculating the mobility edge
of the system.10 In the case of no disorder, the Lanc-
zos method is not useful because the spectrum of the
hamiltonian is E(k1, ..., kd) = 2(cos k1 + ...+cos kd) with
ki = 2πni/N , which has a large degeneracy. Since the
Lanczos algorithm does not detect degenerate eigenval-
ues, the basis produced by the iterative process is not a
complete basis for the lattice, and it leads to a biased
density of states.

The introduction of disorder breaks the degeneracy in
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FIG. 2: Plot of the values of a1
n in the perturbative approxi-

mation. The first nonzero value occurs for the smallest n for
which |n〉 has overlap with the impurity.

the spectrum, and it is a straightforward exercise to cal-
culate a so-called “mobility edge” using a method devel-
oped by Thouless, Edwards, and Licciardello10. These
authors noted that a localized state should be insensitive
to a change in boundary conditions due to the exponen-
tially small amplitude on the boundary of the system.
More precisely, for an extended state, we expect that the
amplitude at a site should be, on average, proportional
to the number of sites in the system. So if we calculate
the shift in energy of a state when switching from peri-
odic to antiperiodic boundary conditions, ∆E, we should
find that N∆Edn/dE is independent of the size of the
system. For the exponentially decaying localized states,
we should find that N∆Edn/dE decreases with the size
of the system. Since the energy shifts ∆E vary consider-
ably for different realizations of the system, the geometric
mean ∆E over many realizations is used. We plot this
number in various energy bins with increasing N . The
energy at which this product begins to decrease with the
size of the system is the critical energy between localized
and extended states. This exercise is shown in Figure 3,
with a mobility edge between E = 3 and E = 3.5. The
eigenvalues are sorted into energy bins of width 0.5, the
geometric mean of the energy shifts for all eigenvalues in
each bin is computed, and the procedure is averaged over
40 realization of the disorder.

VI. CONCLUSIONS

The Lanczos algorithm was used analytically as a
change of basis to study localization. A perturbative
transformation of single-site disorder was developed. Fu-
ture work may be able to extend this approach to single-
site disorder to disorder at all sites on the infinite lat-
tice. Numerical results were also studied on finite and
infinite lattice. The results on finite lattices reproduce
older work. The numerical results on infinite lattice are
complicated by difficulties regarding the convergence of
eigenvalues. In particular, it is not clear that all eigenval-

FIG. 3: Plot of the energy shift method showing a mobility
edge around E = 3.5 for W/h = 6.

ues of localized states should converge, and it is not clear
how to determine when an eigenvalue has converged.
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