Graphene

The Search For Two Dimensions

Christopher Scott Friedline Arizona State University

What Is Graphene?

• Single atomic layer of graphite arranged in a honeycomb

 Consists of sp²-bonded carbon atoms with bond length approximately 1.42 angstroms

• Basic structural element for all other graphitic materials

Graphitic Materials

0-D Fullerenes (Buckyballs)

2-D Graphene

1-D Carbon Nanotubes

3-D Graphite

Why Study Graphene?

Graphene has many new and unusual properties that lead to the current excitement of its study.

- Linear Dispersion Relation Massless Electrons
- Electron Mobility & Minimum Conductivity
- Quantum Hall Effect
- Possibilities For New & Old Physics

Linear Dispersion Relation

- Most condensed matter electron transport is described by the Schrodinger Equation. This is not the case for Graphene.
- The energy-momentum relation is linear near the six corners in graphene's Brillouin zone.
- In this region, electrons behave like relativistic particles having zero effective mass and behave according to Dirac's Equation for spin ¹/₂ particles.
- The Fermi velocity (v_f) is 10^6 m/s.

Electron Mobility & Minimum Conductivity

• Electron mobility in graphene is remarkably high at room temperature.

$$3.5 \times 10^{-5} (\Omega - m) vs 10^{-8} (\Omega - m)$$

• The resistivity of graphene is less than silver, the lowest substance known at room temperature.

 $1.59 \times 10^{-8} (\Omega - m)$

• Should be zero carrier density at Dirac points yet there exists a minimum conductivity.

$$rac{4e^2}{h} ? rac{4e^2}{\pi h}$$

• The origin of minimum conductivity is still unclear.

Quantum Hall Effect

- Potential difference on the opposite sides of an electrical conductor through which an electric current is flowing, created by a magnetic field applied perpendicular to the current.
- Quantum hall effect is seen in 2-D objects with quantized values of conductivity.
- Bi-layer agrees with standard effect while mono-layer has a shift of ¹/₂.
- Graphene is the only known material that sees this effect at room temperature.

$$\sigma_{xy} = \pm \frac{4e^2}{h}N$$

$$\sigma_{xy} = \pm \frac{4e^2}{h} \left(N + \frac{1}{2} \right)$$

Possibilities For New & Old Physics

- Relativistic quantum mechanics
- 2-D Dirac equations
- Klein Paradox
- Veselago Lens
- Table Top Relativity

Future Applications

- Graphenium microprocessors

 order of magnitude better
 than Si
- Graphene transistors more effective the smaller they get
- Graphene powder in batteries to replace carbon nanofibers
- Optical properties allow to be used to improve plasma displays, LCDs and touch screens
- Single molecule gas detection

Looking For 2-Dimensions In a 3-D Universe

- Currently, graphene is the most expensive materials on earth.
- As of April, 2008 a piece of graphene the size of the cross section of a human hair cost \$1,000.
- Producing graphene is easy, finding it is the real challenge.
- Visual and Atomic Force Microscopy

How is Graphene Made and Found in the Lab

One of the hardest aspects of working with graphene is being able to create and find it successfully and **consistently**.

- Preparing SiO₂ wafer
- Rubbing techniques
- Scotch tape method
- Optical microscopy
- AFM

Preparing SiO₂ Wafer

- Diamond Pen
- Acetone Sonication
- IPA Rinse
- Compressed Air
- BOE Etching
- Piranha Etching
- 280 vs. 300 nm Oxide

Rubbing Techniques

The first real challenge of depositing graphene flakes onto SiO_2 is to find a reliable technique that works <u>consistently</u>.

- Gentle to forceful rubbing with tweezers
- Graphite "sandwich"
- Liquid deposition water, acetone, IPA
- Heated wafer
- Cleaving

Scotch Tape Method

- Developed by researchers at Manchester University
- Single piece of graphite cleaved multiple times quickly
- Fresh atomic layers at each graphite site
- Ability to create multiple samples with less time and material

Scotch Tape Method

Optical Microscopy

- Graphene can be viewed optically with minimal magnification
- Approximate thickness is determined by color (black, white, blue, purple, pink)
- Slow process of scanning, pictures and documenting
- 4x, 10x, 20x, 40x, 100x magnification

Atomic Force Microscopy

- Measures height to give a topological picture
- Derivative gives a 3-D picture of surface
- Cantilever oscillates at or near resonant frequency
- Repelled by van der Waals force
- Reflected laser off back of cantilever records data

Atomic Force Microscopy

Sample 080701(1)csf

- Multiple POI's
- Varied thickness
- Possible single layer

Colloidal Gold and Fluorescence Microscopy

- Sample illuminated with specific wavelength of light
- Light is absorbed by gold and emits a longer wavelength
- Colloidal gold is sensitive to dielectric materials
- Should be a large difference in wavelength between single and bi-layer graphene

Experimenting With Gold

- Spun onto substrate
- Viewed with AFM
- Goal: Deposit gold on or around graphene

Setback \rightarrow Discovery

Spinning gold colloid affects thinner pieces of graphene causing it to fold and lose its integrity.

What if gold is spun first and then graphene is deposited?

Single Layer Graphene

Initial results showed multiple POI's with confirmed single layer graphene. Gold colloid was on and around all POI's.

What caused this?

Friction & Anchors

- Gold on the substrate could act as a source of friction
- Graphite moves gold around causes them to clump
- Large enough pieces finally grab onto the substrate and anchor down large layers of graphite

Repeatable

Improvement On Original Technique

Future Research

- Continued production of graphene
- Fluorescence
 microscopy
- Devices
- Growing VO₂ on graphene
- Using gold colloid as VO₂ seeds

- David Cobden Advisor
- Jiang Wei
- Zenghui Wang
- Jae Hyung Park (Not Pictured)
- Jacob Beedle
- Peter Morse
- Geeta Yadav (Not Pictured)

