Quantum Computing with Trapped Ions

...and laser cooling!

Tom Chartrand Reed College

Quantum computing: overview and goals
Trapped Ions as a QC architecture
Ion Trapping and Laser Cooling
Second Harmonic Generation
The Cavity (my part)

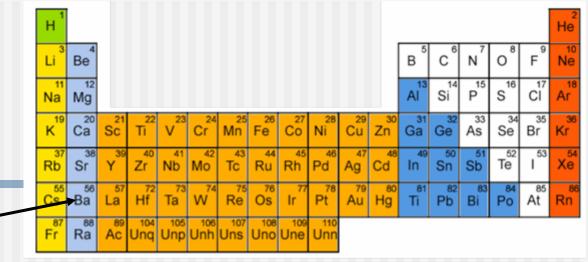
Quantum Computing - What it is

- Classical: Binary data (0s and 1s)
- Quantum: Superposition of 0 and 1
 - 0.5 ?
 - Two "Qubits": A|0>|0>+B |0>|1>+C |1>|0>+D |1>|1>
- What do we do with the bits?
 - Manipulate them logic gates
 - Store them memory

Quantum Computing - What is it good for?

Factoring!!!

- Shor's Algorithm: O((logN)³) vs. O(2^{(logN)^{1/3}})
- Simulating complex quantum systems


A QC Architecture with potential: Trapped Ions

- Two energy levels form qubit (optical or hyperfine)
 Very stable
- Gates:
 - CNOT between two atoms in a trap
 - Single qubit rotation by fast pulses
- Scalable system!
 - Entangle with emitted photons for a "flying qubit"
 - Could connect large number of traps into a computing network

Trapping Ions

- Vacuum system isolates the element wanted
- A combination of static electric field and fields oscillating at radio frequency create potential well, stable only for narrow mass range
- Lasers cool ions until almost stationary

Our System

¹³⁷Ba⁺ ions

- Two ground state hyperfine levels form the qubit
- Transitions between the two driven by varying-length microwave pulses

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

B. Blinov et. al, "Barium Ions for Quantum Computation," Proceedings of The 9th International Workshop on Non-Neutral Plasmas, New York (2008).

Doppler Laser Cooling

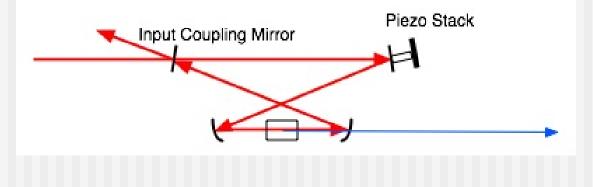
- Uses an optical transition, here S_{1/2} to P_{1/2}
- Laser is detuned slightly lower than the resonant frequency
- Ions moving towards the laser see a higher frequency from the Doppler shift, so are resonant
- Absorption adds photon momentum to ion, slowing it

Our laser can do more than cooling

Allows us to see the ions

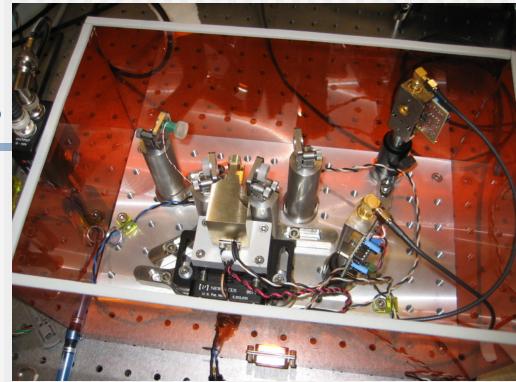
Can inititialize the qubit to one state
 Because of parity, transition depends on polarization

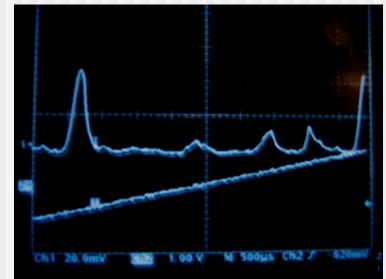
Details of cooling scheme


- Ground state hyperfine splitting (our qubit) is 8 GHz - our cooling transition is actually two - so we add sidebands to the laser with an EOM (Electro-Optic Modulator)
- One laser only slows in one direction... but trapping forces couple all directions of motion (if one slows, they all slow)

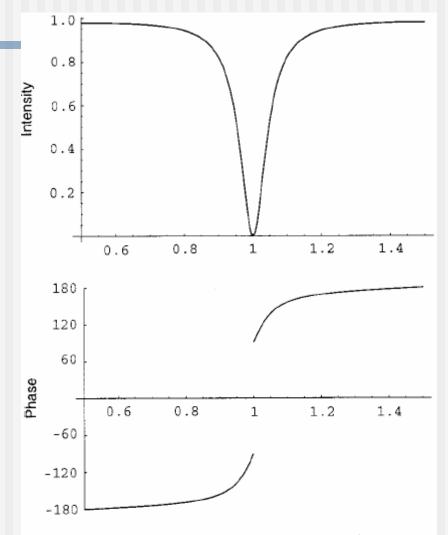
Second Harmonic Generation (493=986/2)

- Difficult to find lasing materials at 493 nm, so we use a 986 nm diode laser and double the frequency
- Uses nonlinear crystal: P=xE+x⁽²⁾E²
- E² has twice the frequency of E, and the polarization changing at this frequency generates a new EM wave


Resonant Enhancement Cavity

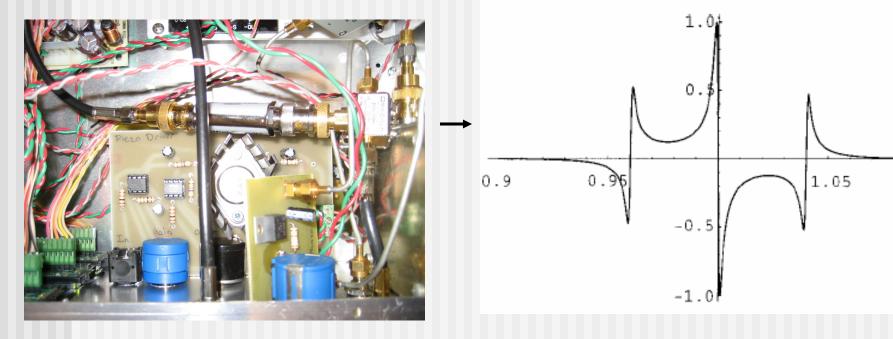

- $P_2 = \alpha P_1^2$
- Problem: for significant harmonic power, need very high fundamental power in the crystal
- Solution: put the crystal in a cavity resonant with the fundamental (L=nλ). The circulating beam constructively interferes with itself

Technical Issues


- Input Coupling
- Mode-matching
- Alignment
- Stabilization
 - PDH Feedback system

Pound-Drever-Hall Lock

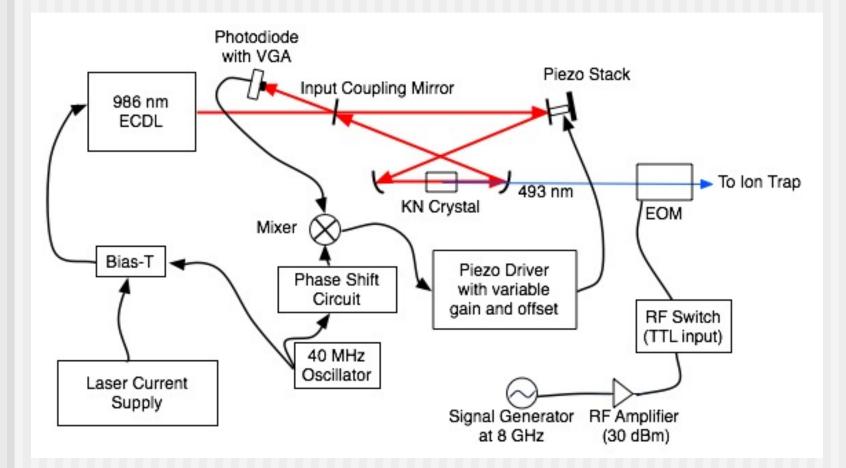
- Reflected signal shows when off resonance
- Intensity is symmetric, so must use phase to know which direction to move for resonance
- Use reference frequency to measure phase shift



frequency (free spectral ranges)

Eric D. Black, "An introduction to Pound-Drever-Hall laser frequency stabilization," Am. J. Phys. 69, 1 (Jan. 2001).

Modulating the laser beam adds sidebands


- These are far off resonance, so entirely reflected, giving a reference mixed with the fundamental reflected beam
- Fast photodiode and tricky electronics extract error signal

1.1

Eric D. Black, "An introduction to Pound-Drever-Hall laser frequency stabilization," Am. J. Phys. 69, 1 (Jan. 2001).

The Laser System

References

- UW Trapped Ion Quantum Computing web page. <u>http://depts.washington.edu/qcomp/</u>
- B. Blinov et. al, "Barium Ions for Quantum Computation," Proceedings of The 9th International Workshop on Non-Neutral Plasmas, New York (2008).
- Wikipedia
- RP Photonics Encyclopedia of Laser Physics and Technology. http://www.rpphotonics.com/encyclopedia.html
- Eric D. Black, "An introduction to Pound-Drever-Hall laser frequency stabilization," Am. J. Phys. 69, 1 (Jan. 2001).

Thanks everyone for listening, and also to Boris Blinov, Nathan Kurz, and everyone else in my lab, Warren Buck and Wick Haxton, and the NRC