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Basic definitions |

QED = Quantum Electrodynamics
EFT = Effective Field Theory

QMC = Quantum Monte Carlo



o |t gives us the opportunity to go over some of
the ideas from the other lectures in a different
setting

o If you have already taken Quantum Field Theory,
you will see familiar results expressed in a
slightly unfamiliar manner

o If you haven't taken Quantum Field Theory,
you can focus on the essential structures and
use this as a set of signposts
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Basic definitions li

Regularization Something we do to integrals

Renormalization Something we do to parameters
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A few fundamental results to keep in mind:

A
/ k dk oc A? Quadratically divergent
A
/ dk oc A Linearly divergent
A dk o .
m x InA Logarithmically divergent

/A dl: 1
— iy Convergent



Basic integrals Il

Radial measure in n-dimensional euclidian space:

/dk — Q/dq Plus-minus



Basic integrals Il

Radial measure in n-dimensional euclidian space:

/dk — Q/dq Plus-minus

/dzk — o7 /q dq Circumference of a circle



Basic integrals Il

Radial measure in n-dimensional euclidian space:

/dk — Q/dq Plus-minus

/dzk — o7 /q dq Circumference of a circle

/ Ak = 47 / q° dq Surface area of a sphere



Basic integrals Il

Radial measure in n-dimensional euclidian space:

/dk — Q/dq Plus-minus

/dzk — o7 /q dq Circumference of a circle

/ Ak = 47 / q° dq Surface area of a sphere

/ d*k = 22 / q> dq You get the picture



Basic integrals Il

Radial measure in n-dimensional euclidian space:

/de/dq
/dszW/qdq
/dBk /q dq
/d4k— /q3dq
/

Plus-minus

Circumference of a circle

Surface area of a sphere

You get the picture

Handy generalization
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QED with external field: traditional

QED Lagrangian: c=-v¢ M - FWFW Ten A

el

Analogous to the Dirac 4x4 matrices Electromagnetic  Dirac current
non-relativistic 7 field tensor
0A, 0A,

| _
My — . . .
Or,  Jdx,

Tu r_%p;

.jps — “F_)’Y‘uw




QED with external field: traditional

. - 0 1
QED Lagrangian: c=— (% — - M) — S Fu B e Ay

Vertex: (also Dirac spinors, external field, and non-integral terms)

kf d4q ik 1 | 1 |
[ — )+ M =g+ A




QED with external field: traditional

: (B 1
QED Lagrangian: c=— (% — - M) — S Fu B e Ay

Vertex: (also Dirac spinors, external field, and non-integral terms)

LK k) d4q il 1 | | |
[ — )+ M =g+ A

Vacuum polarization:

dk 1 1
>'® H““(Q)_/(zw R Yy iy v




QED with external field: traditional

. 9, 1
QED Lagranglan: L=—1 (””8 - ﬂf) ZFWFW + eojuAy

Electron self-energy:

dl 1 1 N
(27) 412’}‘/\ (K —Z) M /A




QED with external field: traditional

Some divergent parameters, delicate cancellations

Electron self-energy: s(+) = /

Y(k) = A+ (if+ M)B+ (if + M)Z.(k)(ifk + M)
A and B divergent
A = p320y, Ao (Logarithmic,
2t M notlinearas Ay — oo )
A eliminated by mass renormalization

€

Bare ag =
0— A



QED with external field: traditional

Ward identity: vertex IS() _in o
connected to self-energy 27
d*q 1 1 1

Vertex: A1) = | s s i = 7o

Au(K' k) = Cy + Aeu (K, k)

C divergent
cxp A[]
C_qulnﬂ,{ Ag = o0

B = C from Ward identity

B and C cancel due to wavefn renormalization
(2 in front of each self-energy insertion)



QED with external field: traditional

Vacuum polarization:

d*k 1 1
st} = / @n)d i(F—g/2) + M K 4/2) 1 M

I, (¢) = (quqv — ¢*0,) D(%)

D(0) divergent

D(0) = 20 In Ao (Logarithmig,
3t M not quadratic as Ao — o0 )

D(0) eliminated by charge renormalization

“The bare charge is infinitely larger than the observed charge”



QED with external field: traditional

QED Lagrangian: c= -7 ( 2

1 :
P‘*@;L-ﬁ + ILI) Y — EFWFW ey

To summarize:

* A series of integrals seemed to be divergent (even quadratically)

» Massaging them we found only logarithmic divergences
(equivalently, 1/ in 4-¢ dimensions)

« Some of the divergences were absorbed in parameter
redefinitions, while others disappeared from the theory

* In any case, the cutoff dropped out



QED with external field: modern
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Modern approach:

The cutoff really is there: the cutoff dependence implies something
Important has to happen at the energy scale Ag



QED with external field: modern

: (B 1
QED Lagrangian: c=-v (% — + M) ¥ = 2 Fu o + eojudy
J0

Modern approach:

The cutoff really is there: the cutoff dependence implies something
Important has to happen at the energy scale Ag

Introducing counterterms:

Remove from the theory all states having energies or momenta
larger than some new cutoff A <« Ag

Pick vertex function as example



QED with external field: modern

QED Lagrangian: c= ¢ (% aiﬂ L M) W — %FWFW + eojudy
Pick vertex function as example:

L d*q 1 f 1 | 1 |
Auls ) _/(2w)4 @ i — )+ M Pl — )+ M

Now rationalize: “Well, we did our best. These things happen.”



QED with external field: modern

QED Lagrangian: c= -7 ( 2

1 :
P‘*@;L-ﬁ + ILI) Y — EFWFW ey

Pick vertex function as example:

o [ d'q 1 1 . 1 |
A““”k)t/}zwﬁ{ﬁ”*qyfg)+fw’“ﬁ¢¢)+ﬂ17*

Now rationalize: “well, we did our best: e things happen.”

by [T 1 iF @) M iR —g) - M
0= / Rr)t @ MW —q)F + M2 H (k= q)2 + M2

The new theory works only for processes at energies much less
than A, so as a first step we can neglect &', k , and M



QED with external field: modern

QED Lagrangian: c=-v¢ (% aiﬂ = M) W — %FWFW + eojnAy
Contribution amounts to:
Ap d4q 1

Ak s Al = / 5 Tn = co(A/Ao)

A (2m)*(¢?)

Equivalently re-incorporated as: s2;, = eoco(A/A0)juAn



QED with external field: modern

- = 1
QED Lagrangian: c=— (’}’”a% - M) ¥ = 2 Fu o + eojudy

Contribution amounts to:

Ap(K k> A) = Mg 1 (A/Ao)
ATy (@ T e

Equivalently re-incorporated as: s2;, = eoco(A/A0)juAn




QED with external field: modern

9,
O -

: y 1
QED Lagrangian: c=— (% +M) % — 3 FiFu + eoduAy

More generally: Taylor expand in powers of k/A , k' /A, and M/A

E(}ﬂ*ﬁ[ﬂl — €nCa — 9,

A2 VF o + (0 Flonwi

INg Mor nterterm =
getting more counterterms 4L, A2 Yoz,




QED with external field: modern

9,
dz

: ) |
QED Lagranglan: = _TP (F}’p, =+ ﬂf) Ulrf’ T EF;_LVF;_LL; -+ e{}j_u,A;L

More generally: Taylor expand in powers of k/A , k' /A, and M/A

E(}ﬂ*ﬁ[ﬂl — €nCa — 9,

getting more counterterms 6L, = e VF 00 + A2 ﬁ"axﬁﬂ’”"w

And so it goes: Remove states and re-incorporate by including
a small number of counterterms



QED with external field: modern

QED Lagrangian: z:_w( &

1 :
o o, - ILI) Y — EFWFW ey

More generally: Taylor expand in powers of k/A , k' /A, and M/A

: oMcy - _ 0 |
getting more counterterms 5L, = =2 Azcl U F 0 0 + 8;2 0 e EFuyt

And so it goes: Remove states and re-incorporate by including
a small number of counterterms

Note: Inthe above example we knew the underlying theory, so we
could explicitly calculate the low-energy constants.
This is not always the case.
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And now a brief introduction to chiral EFT

Should we follow the same path
for Quantum Chromodynamics?

, 1 =
Lqcp = @(ﬁ”fﬁpn — M)q — ng,agg



Quotes on degrees of freedom

“The underlying physical laws necessary for the mathematical theory of a
large part of physics and the whole of chemistry are thus completely
Known”

— Paul Dirac
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Quotes on degrees of freedom

“The underlying physical laws necessary for the mathematical theory of a
large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these
laws leads to equations much too complicated to be soluble.”

— Paul Dirac

“To understand macroscopic properties of matter based on understanding
these microscopic laws is just unrealistic. Even though the microscopic
laws are, in a strict sense, controlling what happens at the larger scale,
they are not the right way to understand that.”

— John Schwarz

“only a fool would imagine that one should try to understand the properties
of waves in the ocean in terms of Feynman-diagram calculations in the

standard model, even if the latter understanding is possible 'in principle'.
— Tom Banks



Nuclear Hamiltonian: chiral EFT

2N Force 3N Force 4N Force e AttemptS tO ConneCt W|th
LO underlying theory (QCD)
::Qfﬁ‘l.::[j >< - .
x « Systematic low-

o XS momentum expansion

(Q/A,)? ] L ,
H ______ - Consistent many-body forces

NNLO R H{  Low-energy constants from
(Q/A,)? { Hl } * experiment or lattice QCD

- -..__¥:-'r “:.. ..; "-.}.:.-"
f f,_}ll's, ) : + ' i‘.._-_i

e Until now non-local in
HH coordinate space, so unused
. in continuum QMC

« Power counting's relation to
renormalization still an open
guestion



Nuclear Hamiltonian: chiral EFT
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2N Force 3N Force 4N Force

Regulator and dictionary: P = (p1—p2)/2 k = (pf +p)/2
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Nuclear Hamiltonian: chiral EFT

0
KE;JZCSJFCT o109
2N Force 3N Force 4N Fo

Regulator and dictionary: P = (p1—p2)/2 k = (pf +p)/2
_ A 2n _ f A 2n
fp,p') = e P e P /D p’' = (P1 — P3)/2 q=p —p



Nuclear Hamiltonian: chiral EFT

I’;E:D]:CS—FCT o] -0

2N Force 3N Force 4N Fo
7 91\ ., (@1-a)ez-q)
(Q/A)° Vi = - (i) T1°T2 1q2 + m‘i-;?r
Regulator and dictionary: p=(p1—p2)/2 Kk — (pf +p)/2

. 2n ! On
f(p,p"):e (p/A)™" . —(P/A) p’:(pi—pa)/Q q=p —p



Nuclear Hamiltonian: chiral EFT

I’;E:D]:CS—FCT o] -0

2N Force 3N Force 4N Fo
2
LO . v _ _ 94 o (1-4q)(o2-q)
Q/A) = T e me2
“ Hﬂi:,-_: K:EE) _ Gl qg _|_02 k2
NLO ff K\\ i T . -
(Q/A,)? l | ...... L + (C:-: g +Cy k )0'1 - 09

£
+ if{m +02) - (q x k)

R —|—Cﬁ(ﬂ'1 -q)(gg.q)
} 4 07(0-1 - k)(ﬂ.-2 : k)

Regulator and dictionary: p=(p1—p2)/2 k=(p' +p)/2
_ A 2n _ f A 2n
im0 ) = @ R s p' = (P} — P3)/2 q=p —Pp



Nuclear Hamiltonian: chiral EFT

I’;E:D]:CS—FCT o] -0

2N Force 3N Force 4N Fo
2
P O _ (94 _ _ (01-9)(02-q)
Q) S CT 2 "
A 9

NLO e VP =C1 @ +C, ¥

A" - o
(Q/A,)? lj | ...... L + (Cg q2 + Cy kz) o109

£
+ if{m +02) - (q x k)

1 Cﬁ(ﬂ'l . q)(gg : q)
} * 4 C?(U'l - k)(ﬂ.-2 : k)

| Long-studied
Y * 'l L two-pion exchange

Regulator and dictionary: P = (p1—p2)/2 k = (pf +p)/2
f(p,p)) = e~ @D = (@'/A)"

!

p’ = (p1 — Pp3)/2 q=p —p



Nuclear Hamiltonian: chiral EFT

::_Q_fa:ﬂ'ix ::I:J 9 f'ﬂ_
L L (2) _ v, 2 2
NLO ffr"(fu_,» 1["1:1; — &4 q 2—|‘ Ca k :
(Q/A,)? l | ...... +(C5 ¢° +Cy k%) 01 - 02
Sl +i%(01 +0) - (ax 1)
NNLO ||| .- H +Cs(o1-a)(o2-q)
Q/A,)? * Hl * + Cr(01 - k) (o2 - k)
| Long-studied
| A% Hl two-pion exchange
N*LO  /\ = ]
@ Ll X [F
o *' ----- ' Contains couplings
from 1IN scattering
Regulator and dictionary: P = (p1—p2)/2 k = (pf +p)/2

. 2n s 2n
Fp.p!) = e~ @IB" (—(@' /) P'=(p1—pP2)/2  a=p -p



Turning to Quantum Monte Carlo




Continuum Quantum Monte Carlo

Rudiments of U(r — o0) = lim e H-ED)Ty,,
Diffusion Monte Carlo:

— e Fo—ET)T

How to do? Start somewhere and evolve
U(R.T) = / G(R.R’. 7)) (R’,0)dR’

With a standard propagator

G(R,R/,7) = (R|e”H-FoO)T|R’)

Cut up into many time slices

r ﬁ F 2
_VR)+V(R') m 2 _ m|R—R'|
G(R,R,Ar) =~ e T e~ 2nZr
o 2wheT




Quantum Monte Carlo

What about more general Hamiltonians?
~5 Z V2+ngk+ Z Viki
j=1,N j<k j<k<l
Focus on the two-body interactions for now

8
Vo= vi=9_ 9 vp(rjr)0P(j, k)

i<k j<k p=1



Quantum Monte Carlo

What about more general Hamiltonians?

5 Z V2+ngk+ Z Viki

j=1,N j<k j<k<l

Focus on the two-body interactions for now

8
Vo= vi=9_ 9 vp(rjr)0P(j, k)

j<k j<kp=1
Eight channels often enough (e.g. Argonne v8')

OP="2(4,k) = (1,05 - Ok; Sy, Lijke - Six) ® (1,75 - 7%)

With tensor: Sjx = 3(7jx - 05 )(Tjk - Ok) — 0 - Ok
: : h
And spin, orbit: S;x = §(aj + o)
h
Ljr = Qz( — 1) X (V; — Vi)



Continuum Quantum Monte Carlo

Rudiments of wave functions from yesterday's lecture

Normal gas for frozen spins
Two Slater determinants, written either using the antisymmetrizer:

@S(R) — A[@’f(‘n(?'l)@n (”'2) e Gﬁ‘ﬂ(’% )] A[ﬁbn (T'l’)(ﬁ;)n (TT) ... On (”'E’)]

or actual determinants (e.g. 7 + 7 particles):

b1(r) dulra) .. di(rr) | | D) Al .. du(rh)
p2(r1) ¢P2(r2) ... @2(r7) P2(ry)  pa(rh) ba (1)
¢3(r1)  ¢s(ra) ... ¢s(r7) 03(ry)  o3(rg) ¢3(17)
Ds(R) = | da(r1) a(ra) ... alrs) | | @a(rh) Sa(rh) .. dalr))
d5(r1) d5(ra) ... s(rr) | | @s(rh) és(rh) ... os(rh)
d6(r1) de(ra) . Pe(r7) d6(r7) o6(rg) oe(17)
¢7(r1) ¢r(r2) ... é7(r7) ¢(r1)  ¢r(ra) ¢7(17)




Continuum Quantum Monte Carlo

More generally, we keep track of the spins-isospins

For A particles we have 24 ways of arranging the spins.
Take A=3 as an example (2° =8):

I 2 I O P O A O R o P (R B N p AR
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More generally, we keep track of the spins-isospins

For A particles we have 24 ways of arranging the spins.
Take A=3 as an example (2° =8):
R 2 2 5 A A Uy QAR
To include isospin, let's examine the case of the triton:
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Thus, the triton has 24 spin-isospin states, such as | T11) |pnn)



Continuum Quantum Monte Carlo

More generally, we keep track of the spins-isospins

For A particles we have 24 ways of arranging the spins.
Take A=3 as an example (2° =8):

R I T 2 4 P B U B 5 P 4 W D (R, gy IR
To include isospin, let's examine the case of the triton:
pnn), |npn), [nnp)
Thus, the triton has 24 spin-isospin states, such as | 1)) |pnn)

Al

A general nucleus needs 24 : states
J Z(A—2)




Phenomenological Hamiltonian

Green's Function Monte Carlo is very accurate and very expensive

200 -. ]

. wz- r4‘ -

-30 4\‘” el ‘7-3 ;5»’2- 12 0 -
5f2- .

40 152 "'-“1 _

B 3/2- N ]

n f1 ..,-'-F L3k ]

— 50 2+ | \ ]
< - 8] i 'a'n--z ]
= F rgonne Vg SR :
z oF with [llinois-7 :
] -0 _|
- GFMC Calculations ]

gof. 24 November 2012 - E

| 4 |

n \ = 0+

90 B I'f;k‘-a_ '|I I|I 0 7
S0 AVI8 . | -

- I_ JIL7 Expt || -l"'D:

-100C C @) IZC_—

Credit: Steve Pieper



Quantum Monte Carlo

Auxiliary Field Diffusion Monte Carlo (Schmidt-Fantoni 1999)

Al
Z\(A - Z)

{GFMC needs 24 - numbers, AFDMC would like only 44 }

Goal: To tackle larger nuclei and infinite matter



Quantum Monte Carlo

Auxiliary Field Diffusion Monte Carlo

Take V5 = Z vjr = Va1 + Vsp and split
<k
Spin-independent: Vst = ) _ [v1(rjx) + v2(rjx)]
j<k
: 1
Spin-dependent: Vsp = B Z Tj,a Aj,ask,B Tk,p
jiok,B



Quantum Monte Carlo

Auxiliary Field Diffusion Monte Carlo

Take V5 = Z vjr = Va1 + Vsp and split

j<k
Spin-independent: Vst = ) _ [v1(rjx) + v2(rjx)]
j<k
: 1
Spin-dependent: Vsp = B Z Tj.a Ajask,p Tk,p
jrak,B

For neutrons: 3N by 3N A matrix knows about spin-spin and tensor:
Aj,ﬂf;k,ﬁ = (’L‘S(‘f'jk) -+ 1’4(3*'3'!::))5&,3 S
[vs(rjk) + ve(rjk)] [37jk - T Tjk - 5 — dap]



Quantum Monte Carlo

Auxiliary Field Diffusion Monte Carlo

Take V5 = Z vjr = Va1 + Vsp and split
i<k

Spin-independent: Vst = ) _ [v1(rjx) + v2(rjx)]
j<k
: 1
Spin-dependent: Vsp = B Z Oja Aj,ask,B Tk,p
jrak,B

For neutrons: 3N by 3N A matrix knows about spin-spin and tensor:

Aj,cr;k,ﬁ = (’f--’S(’f'jk) -+ 1’4(3*'3'!;;))5&,3 S
[vs (k) + ve(Tjk)] [37jk + Ta Tik - T — dap]

Now diagonalize. Use eigendecomposition to create squares:

3N
1
e = Yait, d (On)®An This will end up in an exponent.
p—1



Quantum Monte Carlo

Auxiliary Field Diffusion Monte Carlo (continued)

Handle squares through a Hubbard-Stratonovich transformation:

1 - e
e 2 = —— drer 2 et 1Y
V2 ];oo



Quantum Monte Carlo

Auxiliary Field Diffusion Monte Carlo (continued)

Handle squares through a Hubbard-Stratonovich transformation:

e 2 = —1_ /DO dre
, =)

This leads to the following short-time Green's function:

3N/2 m(R — R/)2
GRR.AT) = (goor-) e ( m(zhm | )EVSI(RW
Th2 AT T

2
S Bmv“ —AATO

2

3N -
H / dxne—T“e:rnﬁ—An&TOn
S V2T J o



Quantum Monte Carlo

Auxiliary Field Diffusion Monte Carlo (continued)

Handle squares through a Hubbard-Stratonovich transformation:

e~ TAOTAT _ / dre™ = EIWO

This leads to the following short-time Green's function:

3N/2 m(R — R/)2
GRR.AT) = (goor-) e (m(zhm | )BVEI(R)M
Th2 AT T

3N - .
H / dxne—T“e:r?ﬂf—An&TOn
S V2T J o

Use importance function (phase of walkers):

N
y; R S H f 33 [H 6,?5&(1'@; 5@):| ‘31> — a‘t"T) + bt|~L>
—1

§<j




How to go beyond?

Combine power of Quantum Monte Carlo with
consistency of chiral Effective Field Theory

Write down a local energy-independent NN potential

- Use local pion-exchange regulator fiong(r) = 1 — e~ ("/R0)*

_ 2n o D
Cf f(PPI):E’ (;Dfﬂ) € (p fﬁ}



How to go beyond?

Combine power of Quantum Monte Carlo with
consistency of chiral Effective Field Theory

Write down a local energy-independent NN potential

. Use local pion-exchange regulator fiong(r) = 1 — e~ ("/R0)"

* Pick 7 different contacts at NLO, just make sure that when
antisymmetrized they lead to a set obeying the required

symmetry principles
Vc(1:2) =Cy ¢°+Cy k7

V-::(f) —ha L a T
+ (03 q2+C4 Fﬂg) J1 09

+(C3¢° +Cuq* 11 - T) 01 - 03

3 f. C
+i— (o1 +09)-qxk © +375(0'1+0'2)'(qu)

2
+ Cs(01-q)(02-q)

+ Ce (o1 -q)(o2 - q)
+C7 (o1 -q)(o2-q) 1 - T + C7(o1 - k) (o2 - k)



How to go beyond?

Combine power of Quantum Monte Carlo with
consistency of chiral Effective Field Theory

» Write down a local energy-independent NN potential

» Before doing many-body calculations, fit to NN phase shifts

il

R ) ,.ﬁﬂ;;;ﬁiﬁ%g[ﬂ@tggw

- g | L L | L | 1
50 100 150 200 250 5 ] 2 25 50 100 150 200 250 DU 50 100 150 200 250
Lab. Energy [MeV] Lab. Energy [MeV] Lab. Energy [MeV] Lab. Energy [MeV]

e Shift [deg]

Phas

A. Gezerlis, |. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, arXiv:1303.6243



Chiral EFT in QMC

——— T » Use Auxiliary-Field

» Many-body forces will
emerge systematically

wn

20— — . .
- [e--o AFDMC LO M Diffusion Monte Carlo to
B AFDMC NLO . . .
- |e—o AFDMC N21L.O . handle the fU” Interaction
151 7§ e First ever non-perturbative
= 1 systematic error bands
> | ]
i ol | +Band sizes to be expected
m [ ]

U I I I I | [ [
0 0.05 0.1 0.15 NEUTRONS I
n [fm™]

A. Gezerlis, |. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, arXiv:1303.6243




E/N [MeV]

Chiral EFT in lattice QMC

I I I I I I I
20
- ¢ o AFDMC 1O
AFDMC NLO

e—o AFDMC N2LO
15 - -0-' . *

Dean Lee/nuclear lattice EFT collaboration

« Complementary Quantum
Monte Carlo approach that
has already been using
chiral EFT forces

 Formalism to be discussed
in later lecture

* Preliminary results
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QMC vs MBPT

L T AL « Comparison with many-
body perturbation approach

« MBPT bands come from

10l diff. single-particle spectra

» Soft potential in excellent
agreement with AFDMC
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