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RG flow BD Perturbativeness 3NF A=3,4 Numerical

Flow in momentum basis with η(s) = [T ,Hs]

For A = 2, project on rel. momentum states |k〉, but generic

dVs

ds
= [[Trel,Vs],Hs] with Trel|k〉 = εk |k〉 and λ2 = 1/

√
s

dVλ
dλ

(k , k ′) ∝ −(εk − εk ′)2Vλ(k , k ′)+
∑

q

(εk + εk ′ − 2εq)Vλ(k ,q)Vλ(q, k ′)

Vλ=3.0(k , k ′) 1st term 2nd term Vλ=2.5(k , k ′)

First term drives 1S0 Vλ toward diagonal:

Vλ(k , k ′) = Vλ=∞(k , k ′) e−[(εk − εk ′)/λ2]2 + · · ·
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RG flow BD Perturbativeness 3NF A=3,4 Numerical

Flow of different N3LO chiral EFT potentials
1S0 from N3LO (500 MeV) of Entem/Machleidt

1S0 from N3LO (550/600 MeV) of Epelbaum et al.

Significant decoupling even for “soft” EFT interaction
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Visualizing the softening of NN interactions
Project non-local NN potential: Vλ(r) =

∫
d3r ′ Vλ(r , r ′)

Roughly gives action of potential on long-wavelength nucleons

Central part (S-wave) [Note: The Vλ’s are all phase equivalent!]
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Tensor part (S-D mixing) [graphs from K. Wendt]
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Run to lower λ via SRG =⇒ ≈Universal VNN
Diagonal Vλ(k , k)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
k [fm−1]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

V
λ(k

,k
) [

fm
]

550/600 [E/G/M]
600/700 [E/G/M]
500 [E/M]
600 [E/M]

λ = 5.0 fm−1

1S0

Off-Diagonal Vλ(k ,0)
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Apparently different NN potentials flow to common VNN

Do NNN interactions evolve to universal form? [Hebeler: yes!]
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Approach to universality (fate of high-q physics)
Run NN to lower λ via SRG =⇒ ≈Universal low-k VNN
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k < λ

k′ < λ

=⇒ C0

q � λ (or λ) intermediate states
=⇒ replace with contact term:

C0δ
3(x− x′)

[cf. Left = · · ·+ 1
2 C0(ψ†ψ)2 + · · · ]

Similar pattern with phenomenological potentials (e.g., AV18)
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Two ways to decouple with RG equations
“Vlow k ”

Λ
0

Λ
1

Λ
2

k’

k

Lower a cutoff Λi in k , k ′,
e.g., demand
dT (k , k ′; k2)/dΛ = 0

Similarity RG

λ
0

λ
1

λ
2

k’

k

Drive the Hamiltonian toward
diagonal with “flow equation”
[Wegner; Glazek/Wilson (1990’s)]

=⇒ Both tend toward universal low-momentum interactions!
Dick Furnstahl Nuclei at Low Resolution
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Block diagonalization via SRG [Gs = HBD]

Can we get a Λ = 2 fm−1 Vlow k -like potential with SRG?

Yes! Use dHs
ds = [[Gs,Hs],Hs] with Gs =

(
PHsP 0

0 QHsQ

)

What are the best generators for nuclear applications?
Dick Furnstahl Nuclei at Low Resolution
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Custom potentials via the SRG
Can we tailor the potential to other shapes with the SRG?
Consider dHs

ds = [[Gs,Hs],Hs] in the 1P1 partial wave
with a strange choice for Gs

Dick Furnstahl Nuclei at Low Resolution
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Custom potentials via the SRG
Can we tailor the potential to other shapes with the SRG?
Consider dHs

ds = [[Gs,Hs],Hs] in the 1P1 partial wave
with a strange choice for Gs
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Variational calculations in three-nucleon systems

Triton ground-state energy
vs. size of harmonic oscillator
basis (Nmax~ω excitations)

Rapid convergence as
λ decreases

Note softening already at
λ = 3 fm−1 with N3LO EFT
Λ = 600 MeV = 3 fm−1

Different binding energies!

Nuclear matter doesn’t
saturate at low λ
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Variational calculations in three-nucleon systems

Triton ground-state energy
vs. size of harmonic oscillator
basis (Nmax~ω excitations)

Rapid convergence as
λ decreases

Note softening already at
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Flow equations lead to many-body operators

Consider a’s and a†’s wrt s.p. basis and reference state:

dVs

ds
=
[[∑

a†a︸︷︷︸
Gs

,
∑

a†a†aa︸ ︷︷ ︸
2-body

]
,
∑

a†a†aa︸ ︷︷ ︸
2-body

]
= · · ·+

∑
a†a†a†aaa︸ ︷︷ ︸

3-body!

+ · · ·

so there will be A-body forces (and operators) generated
Is this a problem?

Ok if “induced” many-body forces are same size as natural ones

Nuclear 3-body forces already needed in unevolved potential
In fact, there are A-body forces (operators) initially
Natural hierarchy from chiral EFT
=⇒ stop flow equations before unnatural or use Gs to suppress
Still needed: analytic bounds on A-body growth

SRG is a tractable method to evolve many-body operators
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3D SRG evolution with Trel in a Jacobi HO basis
Can evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]

Here: use anti-symmetric Jacobi HO basis from NCSM
directly obtain SRG matrix elements in HO basis
separate 3-body evolution not needed

Compare 2-body only to full 2 + 3-body evolution:
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3D SRG evolution with Trel in a Jacobi HO basis
Can evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]

Here: use anti-symmetric Jacobi HO basis from NCSM
directly obtain SRG matrix elements in HO basis
separate 3-body evolution not needed
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3D SRG evolution with Trel in a Jacobi HO basis
Can evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]

Here: use anti-symmetric Jacobi HO basis from NCSM
directly obtain SRG matrix elements in HO basis
separate 3-body evolution not needed

Compare 2-body only to full 2 + 3-body evolution:
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Tjon line revisited
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Contributions to the ground-state energy
Look at ground-state matrix elements of KE, NN, 3N, 4N
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Clear hierarchy, but also strong cancellations at NN level
What about the A dependence? Recent results up to 48Ca!
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3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]SRG Evolution in Three-Body Space

α = 0.00 fm4

λ =∞ fm−1
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3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]SRG Evolution in Three-Body Space
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3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]SRG Evolution in Three-Body Space
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3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]SRG Evolution in Three-Body Space

α = 0.01 fm4

λ = 3.16 fm−1

!
E′ ′JT
"" #Hα − Tint
""EJT
$

Jπ = 1
2
+

, T = 1
2 ,ℏΩ = 24MeV

3B-Jacobi HO matrix elements

0 → E→ 18 20 22 24 26 28
(E, )

28

26

24

22

20

18

←

E′

←

0

.

(E
′ ,

′ )

2

1.16

0.64

0.32

0.12

0

[M
e
V

]

NCSM ground state 3H

!

!

!

!

!
! ! ! ! ! !

!

0 4 8 12 16 20 24 28

Nm

-8.5

-8

-7.5

-7

-6.5

E
[M

e
V

]

11

Dick Furnstahl Nuclei at Low Resolution



RG flow BD Perturbativeness 3NF A=3,4 Numerical

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]SRG Evolution in Three-Body Space
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3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]SRG Evolution in Three-Body Space
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3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]SRG Evolution in Three-Body Space

α = 0.08 fm4
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3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]SRG Evolution in Three-Body Space
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3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]SRG Evolution in Three-Body Space

α = 0.32 fm4
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3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]SRG Evolution in Three-Body Space
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λ = 1.12 fm−1

!
E′ ′JT
"" #Hα − Tint
""EJT
$

Jπ = 1
2
+

, T = 1
2 ,ℏΩ = 24MeV

3B-Jacobi HO matrix elements

0 → E→ 18 20 22 24 26 28
(E, )

28

26

24

22

20

18

←

E′

←

0

.

(E
′ ,

′ )

2

1.16

0.64

0.32

0.12

0

[M
e
V

]

NCSM ground state 3H

!

!

!

!

!
! ! ! ! ! ! ! ! !

!

0 4 8 12 16 20 24 28

Nm

-8.5

-8

-7.5

-7

-6.5

E
[M

e
V

]

17

Dick Furnstahl Nuclei at Low Resolution



RG flow BD Perturbativeness 3NF A=3,4 Numerical

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]SRG Evolution in Three-Body Space

α = 1.28 fm4

λ = 0.94 fm−1
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3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]SRG Evolution in Three-Body Space

α = 1.28 fm4

λ = 0.94 fm−1
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Weinberg eigenvalue analysis of convergence
Born Series: T (E) = V + V

1
E − H0

V + V
1

E − H0
V

1
E − H0

V + · · ·

For fixed E , find (complex) eigenvalues ην(E) [Weinberg]

1
E − H0

V |Γν〉 = ην |Γν〉 =⇒ T (E)|Γν〉 = V |Γν〉(1 + ην + η2
ν + · · · )

=⇒ T diverges if any |ην(E)| ≥ 1 [nucl-th/0602060]
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Lowering the cutoff increases “perturbativeness”
Weinberg eigenvalue analysis (repulsive) [nucl-th/0602060]
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Pauli blocking in nuclear matter increases it even more!
at Fermi surface, pairing revealed by |ην | > 1
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Lowering the cutoff increases “perturbativeness”
Weinberg eigenvalue analysis (repulsive) [nucl-th/0602060]
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Lowering the cutoff increases “perturbativeness”
Weinberg eigenvalue analysis (ην at −2.22 MeV vs. density)
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3S1 with Pauli blocking

Pauli blocking in nuclear matter increases it even more!
at Fermi surface, pairing revealed by |ην | > 1
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Comments on computational aspects
Although momentum is continuous in principle, in practice
represented as discrete (gaussian quadrature) grid:

=⇒

Calculations become just matrix multiplications! E.g.,

〈k |V |k〉+
∑
k ′

〈k |V |k ′〉〈k ′|V |k〉
(k2 − k ′2)/m

+· · · =⇒ Vii +
∑

j

VijVji
1

(k2
i − k2

j )/m
+· · ·

100× 100 resolution is sufficient for two-body potential
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Discretization of integrals =⇒ matrices!
Momentum-space flow equations have integrals like:

I(p,q) ≡
∫

dk k2 V (p, k)V (k ,q)

Introduce gaussian nodes and weights {kn,wn} (n = 1,N)

=⇒
∫

dk f (k) ≈
∑

n

wn f (kn)

Then I(p,q)→ Iij , where p = ki and q = kj , and

Iij =
∑

n

k2
n wn VinVnj →

∑
n

ṼinṼnj where Ṽij =
√

wiki Vij kj
√

wj

Lets us solve SRG equations, integral equation for phase
shift, Schrödinger equation in momentum representation, . . .
In practice, N=100 gauss points more than enough for
accurate nucleon-nucleon partial waves
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MATLAB Code for SRG is a direct translation!
The flow equation d

ds Vs = [[T ,Hs],Hs] is solved by
discretizing, so it is just matrix multiplication.
If the matrix Vs is converted to a vector by “reshaping”, it can
be fed to a differential equation solver, with the right side:

% V_s is a vector of the current potential; convert to square matrix
V_s_matrix = reshape(V_s, tot_pts, tot_pts);
H_s_matrix = T_matrix + V_s_matrix; % form the Hamiltontian

% Matrix for the right side of the SRG differential equation
if (strcmp(evolution,’T’))

rhs_matrix = my_commutator( my_commutator(T_matrix, H_s_matrix), ...
H_s_matrix );

elseif (strcmp(evolution,’Wegner’))
rhs_matrix = my_commutator( my_commutator(diag(diag(H_s_matrix)), ...

H_s_matrix), H_s_matrix );

[etc.]

% convert the right side matrix to a vector to be returned
dVds = reshape(rhs_matrix, tot_pts*tot_pts, 1);
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Pseudocode for SRG evolution

1 Set up basis (e.g., momentum grid with gaussian quadrature
or HO wave functions with Nmax)

2 Calculate (or input) the initial Hamiltonian and Gs matrix
elements (including any weight factors)

3 Reshape the right side [[Gs,Hs],Hs] to a vector and pass it to
a coupled differential equation solver

4 Integrate Vs to desired s (or λ = s−1/4)
5 Diagonalize Hs with standard symmetric eigensolver

=⇒ energies and eigenvectors

6 Form U =
∑

i |ψ
(i)
s 〉〈ψ(i)

s=0| from the eigenvectors
7 Output or plot or calculate observables
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Many versions of SRG codes are in use

Mathematica, MATLAB, Python, C++, Fortran-90
Instructive computational project for undergraduates!

Once there are discretized matrices, the solver is the same
with any size basis in any number of dimensions!

Still the same solution code for a many-particle basis
Any basis can be used

So far discretized momentum and harmonic oscillators
An accurate 3NF evolution in HO basis takes ∼ 20 million
matrix elements =⇒ that many differential equations
Other possibilities: hyperspherical harmonics, correlated
gaussians, . . .
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