Atomic Nuclei at Low Resolution

Dick Furnstahl

Department of Physics Ohio State University

July, 2013

Flow in momentum basis with $\eta(s) = [T, H_s]$

• For $A = 2$, project on rel. momentum states $|k\rangle$, but generic $\frac{dV_s}{ds} = [[T_{\text{rel}}, V_s], H_s]$ with $T_{\text{rel}}|k\rangle = \epsilon_k |k\rangle$ and $\lambda^2 = 1/\sqrt{s}$

• First term drives ${}^{1}S_{0}$ V_{λ} toward diagonal:

$$
V_{\lambda}(k,k')=V_{\lambda=\infty}(k,k')e^{-\left[(\epsilon_k-\epsilon_{k'})/\lambda^2\right]^2}+\cdots
$$

Flow in momentum basis with $\eta(s) = [T, H_s]$

• For $A = 2$, project on rel. momentum states $|k\rangle$, but generic $\frac{dV_s}{ds} = [[T_{rel}, V_s], H_s]$ with $T_{rel}|k\rangle = |\epsilon_k\rangle$ and $\lambda^2 = 1/\sqrt{s}$

• First term drives ${}^{1}S_{0}$ V_{λ} toward diagonal:

$$
V_{\lambda}(k,k')=V_{\lambda=\infty}(k,k')e^{-\left[(\epsilon_k-\epsilon_{k'})/\lambda^2\right]^2}+\cdots
$$

Flow in momentum basis with $\eta(s) = [T, H_s]$

• For $A = 2$, project on rel. momentum states $|k\rangle$, but generic $\frac{dV_s}{ds} = [[T_{rel}, V_s], H_s]$ with $T_{rel}|k\rangle = |\epsilon_k\rangle$ and $\lambda^2 = 1/\sqrt{s}$

dV^λ $\frac{dV_{\lambda}}{d\lambda}(k,k') \propto -(\epsilon_k - \epsilon_{k'})^2 V_{\lambda}(k,k') + \sum_{\alpha}$ $(\epsilon_k + \epsilon_{k'} - 2\epsilon_q)V_{\lambda}(k,q)V_{\lambda}(q,k')$ *q* k^{2} (fm⁻²) k'^2 (fm⁻²) k^{2} (fm⁻²) k^{2} (fm⁻²) 10 10 10 $\frac{1}{2}$
0.5 $\frac{1}{2}$ 5
x² (fm²) k^2 (fm⁻²) $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ for $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ $\frac{1}{2}$ (fm²) 5 10 10 10 $V_{\lambda=2.0}(k, k)$) 1st term $2nd$ term $V_{\lambda=1.5}(k, k')$

• First term drives ${}^{1}S_{0}$ V_{λ} toward diagonal:

$$
V_{\lambda}(k,k')=V_{\lambda=\infty}(k,k')e^{-\left[(\epsilon_k-\epsilon_{k'})/\lambda^2\right]^2}+\cdots
$$

Flow of different N³**LO chiral EFT potentials**

 \bullet ¹S₀ from N³LO (550/600 MeV) of Epelbaum et al.

● Significant decoupling even for "soft" EFT interaction

Dick Furnstahl [Nuclei at Low Resolution](#page-0-0)

Flow of different N³**LO chiral EFT potentials**

■ ³S₁ from N³LO (550/600 MeV) of Epelbaum et al.

● Significant decoupling even for "soft" EFT interaction

Visualizing the softening of NN interactions

- Project non-local NN potential: $\overline{V}_\lambda(r) = \int d^3r' V_\lambda(r,r')$
	- Roughly gives action of potential on long-wavelength nucleons
- **●** Central part (S-wave) [Note: The V_{λ} 's are all phase equivalent!]

Tensor part (S-D mixing) [graphs from K. Wendt]

- Apparently different NN potentials flow to common *VNN*
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

- Apparently different NN potentials flow to common *VNN*
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

- Apparently different NN potentials flow to common *VNN*
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

- Apparently different NN potentials flow to common *VNN*
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

- Apparently different NN potentials flow to common *VNN*
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

- Apparently different NN potentials flow to common *VNN*
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

Two ways to decouple with RG equations

Lower a cutoff Λ_i in $k, k',$ e.g., demand *dT*(*k*, *k'*; *k*²)/*d*Λ = 0

• Drive the Hamiltonian toward diagonal with "flow equation" [Wegner; Glazek/Wilson (1990's)]

 \implies Both tend toward universal low-momentum interactions!

- Can we get a $\Lambda = 2$ fm $^{-1}$ $V_{\text{low }k}$ -like potential with SRG?
- $\mathsf{Yes}! \, \mathsf{Use} \, \frac{\mathsf{d} \mathsf{H}_\mathsf{S}}{\mathsf{d} \mathsf{s}} = [[\mathsf{G}_\mathsf{S},\mathsf{H}_\mathsf{S}],\mathsf{H}_\mathsf{S}] \, \, \mathsf{with} \, \, \mathsf{G}_\mathsf{S} = \left(\begin{array}{cc} P \mathsf{H}_\mathsf{S} P & 0 \ 0 & O \mathsf{H}_\mathsf{S} \end{array} \right)$ 0 *QHsQ* \setminus

What are the best generators for nuclear applications?

Dick Furnstahl [Nuclei at Low Resolution](#page-0-0)

- Can we get a $\Lambda = 2$ fm $^{-1}$ $V_{\text{low }k}$ -like potential with SRG?
- $\mathsf{Yes}! \, \mathsf{Use} \, \frac{\mathsf{d} \mathsf{H}_\mathsf{S}}{\mathsf{d} \mathsf{s}} = [[\mathsf{G}_\mathsf{S},\mathsf{H}_\mathsf{S}],\mathsf{H}_\mathsf{S}] \, \, \mathsf{with} \, \, \mathsf{G}_\mathsf{S} = \left(\begin{array}{cc} P \mathsf{H}_\mathsf{S} P & 0 \ 0 & O \mathsf{H}_\mathsf{S} \end{array} \right)$ 0 *QHsQ* \setminus

What are the best generators for nuclear applications?

Dick Furnstahl [Nuclei at Low Resolution](#page-0-0)

Can we get a $\Lambda = 2$ fm $^{-1}$ $V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

Can we get a $\Lambda = 2$ fm $^{-1}$ $V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

What are the best generators for nuclear applications?

Dick Furnstahl [Nuclei at Low Resolution](#page-0-0)

Can we get a $\Lambda = 2$ fm $^{-1}$ $V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

Can we get a $\Lambda = 2$ fm $^{-1}$ $V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

Can we get a $\Lambda = 2$ fm $^{-1}$ $V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

Can we get a $\Lambda = 2$ fm $^{-1}$ $V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

Can we get a $\Lambda = 2$ fm $^{-1}$ $V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

Can we get a $\Lambda = 2$ fm $^{-1}$ $V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

Can we get a $\Lambda = 2$ fm $^{-1}$ $V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

What are the best generators for nuclear applications?

Dick Furnstahl [Nuclei at Low Resolution](#page-0-0)

- Can we tailor the potential to other shapes with the SRG?
- Consider $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ in the ¹P₁ partial wave with a strange choice for *G^s*

- Can we tailor the potential to other shapes with the SRG?
- Consider $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ in the ¹P₁ partial wave with a strange choice for *G^s*

- Can we tailor the potential to other shapes with the SRG?
- Consider $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ in the ¹P₁ partial wave with a strange choice for *G^s*

Dick Furnstahl [Nuclei at Low Resolution](#page-0-0)

- Can we tailor the potential to other shapes with the SRG?
- Consider $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ in the ¹P₁ partial wave with a strange choice for *G^s*

- Can we tailor the potential to other shapes with the SRG?
- Consider $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ in the ¹P₁ partial wave with a strange choice for *G^s*

- Can we tailor the potential to other shapes with the SRG?
- Consider $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ in the ¹P₁ partial wave with a strange choice for *G^s*

- Can we tailor the potential to other shapes with the SRG?
- Consider $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ in the ¹P₁ partial wave with a strange choice for *G^s*

- Can we tailor the potential to other shapes with the SRG?
- Consider $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ in the ¹P₁ partial wave with a strange choice for *G^s*

- Can we tailor the potential to other shapes with the SRG?
- Consider $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ in the ¹P₁ partial wave with a strange choice for *G^s*

- Can we tailor the potential to other shapes with the SRG?
- Consider $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ in the ¹P₁ partial wave with a strange choice for *G^s*

- Can we tailor the potential to other shapes with the SRG?
- Consider $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ in the ¹P₁ partial wave with a strange choice for *G^s*

Variational calculations in three-nucleon systems

- Triton ground-state energy vs. size of harmonic oscillator basis ($N_{\text{max}}\hbar\omega$ excitations)
- Rapid convergence as λ decreases
- Note softening already at $\lambda = 3$ fm⁻¹ with N³LO EFT $\Lambda = 600$ MeV = 3 fm⁻¹
- Different binding energies!

Variational calculations in three-nucleon systems

- Triton ground-state energy vs. size of harmonic oscillator basis ($N_{\text{max}}\hbar\omega$ excitations)
- Rapid convergence as λ decreases
- Note softening already at $\lambda = 3$ fm⁻¹ with N³LO EFT $\Lambda = 600$ MeV = 3 fm⁻¹
- Different binding energies!
- Nuclear matter doesn't

Flow equations lead to many-body operators

Consider *a*'s and *a* † 's wrt s.p. basis and reference state:

$$
\frac{dV_s}{ds} = \Big[\Big[\sum \frac{a^\dagger a}{G_s}, \sum \frac{a^\dagger a^\dagger aa}{2\text{-body}}\Big], \sum \frac{a^\dagger a^\dagger aa}{2\text{-body}}\Big] = \dots + \sum \frac{a^\dagger a^\dagger a^\dagger a a}{3\text{-body}} + \dots
$$

so there will be *A*-body forces (and operators) generated

- Is this a problem?
	- Ok if "induced" many-body forces are same size as natural ones
- Nuclear 3-body forces already needed in unevolved potential
	- In fact, there are A-body forces (operators) initially
	- Natural hierarchy from chiral EFT
		- =⇒ stop flow equations before unnatural or use *G^s* to suppress
	- Still needed: analytic bounds on *A*-body growth
- SRG is a tractable method to evolve many-body operators

3D SRG evolution with *T*rel **in a Jacobi HO basis**

- **Can evolve in** *any* **basis [E. Jurgenson, P. Navrátil, rif (2009)]**
	- Here: use anti-symmetric Jacobi HO basis from NCSM
	- directly obtain SRG matrix elements in HO basis
	- separate 3-body evolution not needed
- Compare 2-body only to full $2 + 3$ -body evolution:

3D SRG evolution with *T*rel **in a Jacobi HO basis**

- **Can evolve in** *any* **basis [E. Jurgenson, P. Navrátil, rif (2009)]**
	- Here: use anti-symmetric Jacobi HO basis from NCSM
	- directly obtain SRG matrix elements in HO basis
	- separate 3-body evolution not needed
- Compare 2-body only to full $2 + 3$ -body evolution:

3D SRG evolution with *T*rel **in a Jacobi HO basis**

- **Can evolve in** *any* **basis [E. Jurgenson, P. Navrátil, rif (2009)]**
	- Here: use anti-symmetric Jacobi HO basis from NCSM
	- directly obtain SRG matrix elements in HO basis
	- separate 3-body evolution not needed
- Compare 2-body only to full $2 + 3$ -body evolution:

Dick Furnstahl [Nuclei at Low Resolution](#page-0-0)

Tjon line revisited

Contributions to the ground-state energy

Look at ground-state matrix elements of KE, NN, 3N, 4N

[RG](#page-1-0) [flow](#page-1-0) [BD](#page-19-0) [Perturbativeness](#page-42-0) [3NF](#page-46-0) [A=3,4](#page-51-0) [Numerical](#page-66-0)

Clear hierarchy, but also strong cancellations at NN level

What about the *A* dependence? Recent results up to ⁴⁸Ca!

Weinberg eigenvalue analysis of convergence

Born Series:
$$
T(E) = V + V \frac{1}{E - H_0} V + V \frac{1}{E - H_0} V \frac{1}{E - H_0} V + \cdots
$$

• For fixed *E*, find (complex) eigenvalues $\eta_{\nu}(E)$ [Weinberg]

1 $\frac{1}{E - H_0} V |\Gamma_{\nu}\rangle = \eta_{\nu} |\Gamma_{\nu}\rangle \Rightarrow T(E) |\Gamma_{\nu}\rangle = V |\Gamma_{\nu}\rangle (1 + \eta_{\nu} + \eta_{\nu}^2 + \cdots)$

 \implies *T* diverges if *any* $|\eta_{\nu}(E)| \ge 1$ [nucl-th/0602060]

Lowering the cutoff increases "perturbativeness"

Weinberg eigenvalue analysis (repulsive) [nucl-th/0602060]

Lowering the cutoff increases "perturbativeness"

Weinberg eigenvalue analysis (repulsive) [nucl-th/0602060]

Lowering the cutoff increases "perturbativeness"

• Weinberg eigenvalue analysis (η_{ν}) at -2.22 MeV vs. density)

• Pauli blocking in nuclear matter increases it even more! • at Fermi surface, pairing revealed by $|\eta_{\nu}| > 1$

Comments on computational aspects

Although momentum is continuous in principle, in practice represented as discrete (gaussian quadrature) grid:

• Calculations become just matrix multiplications! E.g.,

$$
\langle k|V|k\rangle+\sum_{k'}\frac{\langle k|V|k'\rangle\langle k'|V|k\rangle}{(k^2-k'^2)/m}+\cdots\Longrightarrow V_{ii}+\sum_jV_{ij}V_{ji}\frac{1}{(k_i^2-k_j^2)/m}+\cdots
$$

 \bullet 100 \times 100 resolution is sufficient for two-body potential

Discretization of integrals ⇒ matrices!

• Momentum-space flow equations have integrals like:

$$
I(p,q) \equiv \int dk \, k^2 \, V(p,k) V(k,q)
$$

• Introduce gaussian nodes and weights $\{k_n, w_n\}$ ($n = 1, N$)

$$
\implies \int dk \, f(k) \approx \sum_n w_n \, f(k_n)
$$

Then $I(p,q) \rightarrow I_{ij}$, where $p=k_i$ and $q=k_j$, and

$$
I_{ij} = \sum_{n} k_n^2 w_n V_{in} V_{nj} \rightarrow \sum_{n} \widetilde{V}_{in} \widetilde{V}_{nj} \text{ where } \widetilde{V}_{ij} = \sqrt{w_i} k_i V_{ij} k_j \sqrt{w_j}
$$

- Lets us solve SRG equations, integral equation for phase shift, Schrödinger equation in momentum representation, ...
- \bullet In practice, N=100 gauss points more than enough for accurate nucleon-nucleon partial waves

MATLAB Code for SRG is a direct translation!

- The flow equation $\frac{d}{ds}V_s = [[T, H_s], H_s]$ is solved by discretizing, so it is just matrix multiplication.
- **If the matrix** V_s **is converted to a vector by "reshaping", it can** be fed to a differential equation solver, with the right side:

```
% V_s is a vector of the current potential; convert to square matrix
V_s_matrix = reshape(V_s, tot_pts, tot_pts);
H s matrix = T matrix + V s matrix; % form the Hamiltontian
% Matrix for the right side of the SRG differential equation
if (strcmp(evolution,'T'))
  rhs matrix = my_commutator( my_commutator(T_matrix, H_s_matrix), ...
                              H s matrix ):
```
elseif (strcmp(evolution,'Wegner')) rhs_matrix = my_commutator(my_commutator(diag(diag(H_s_matrix)), \ldots H_s_matrix), H_s_matrix):

[etc.]

% convert the right side matrix to a vector to be returned dVds = reshape(rhs_matrix, tot_pts*tot_pts, 1);

Pseudocode for SRG evolution

- **¹** Set up basis (e.g., momentum grid with gaussian quadrature or HO wave functions with N_{max})
- **²** Calculate (or input) the initial Hamiltonian and *G^s* matrix elements (including any weight factors)
- **³** Reshape the right side [[*Gs*, *Hs*], *Hs*] to a vector and pass it to a coupled differential equation solver
- **4** Integrate V_s to desired *s* (or $\lambda = s^{-1/4}$)
- **⁵** Diagonalize *H^s* with standard symmetric eigensolver \implies energies and eigenvectors
- **6** Form $U = \sum_i |\psi_{\mathbf{s}}^{(i)}|$ $\langle i\rangle\langle\psi^{(i)}_{\mathbf{s}=}$ *s*=0 | from the eigenvectors
- **7** Output or plot or calculate observables

Many versions of SRG codes are in use

- Mathematica, MATLAB, Python, C++, Fortran-90
	- Instructive computational project for undergraduates!
- Once there are discretized matrices, the solver is the same with any size basis in any number of dimensions!
- Still the same solution code for a many-particle basis
- **•** Any basis can be used
	- So far discretized momentum and harmonic oscillators
	- \bullet An accurate 3NF evolution in HO basis takes \sim 20 million matrix elements \implies that many differential equations
	- Other possibilities: hyperspherical harmonics, correlated gaussians, . . .