Atomic Nuclei at Low Resolution

Dick Furnstahl

Department of Physics Ohio State University

July, 2013

Flow in momentum basis with $\eta(s) = [T, H_s]$

• For A = 2, project on rel. momentum states $|k\rangle$, but generic $\frac{dV_s}{ds} = [[T_{rel}, V_s], H_s] \quad \text{with} \quad T_{rel}|k\rangle = \epsilon_k |k\rangle \quad \text{and} \quad \lambda^2 = 1/\sqrt{s}$

• First term drives ${}^{1}S_{0} V_{\lambda}$ toward diagonal:

$$V_{\lambda}(k,k') = V_{\lambda=\infty}(k,k') e^{-[(\epsilon_k - \epsilon_{k'})/\lambda^2]^2} + \cdots$$

Flow in momentum basis with $\eta(s) = [T, H_s]$

• For A = 2, project on rel. momentum states $|k\rangle$, but generic $\frac{dV_s}{ds} = [[T_{rel}, V_s], H_s] \quad \text{with} \quad T_{rel}|k\rangle = |\epsilon_k\rangle \quad \text{and} \quad \lambda^2 = 1/\sqrt{s}$

• First term drives ${}^{1}S_{0} V_{\lambda}$ toward diagonal:

$$V_{\lambda}(k,k') = V_{\lambda=\infty}(k,k') e^{-[(\epsilon_k - \epsilon_{k'})/\lambda^2]^2} + \cdots$$

Flow in momentum basis with $\eta(s) = [T, H_s]$

• For A = 2, project on rel. momentum states $|k\rangle$, but generic $\frac{dV_s}{ds} = [[T_{rel}, V_s], H_s] \quad \text{with} \quad T_{rel}|k\rangle = |\epsilon_k\rangle \quad \text{and} \quad \lambda^2 = 1/\sqrt{s}$

• First term drives ${}^{1}S_{0} V_{\lambda}$ toward diagonal:

$$V_{\lambda}(k,k') = V_{\lambda=\infty}(k,k') e^{-[(\epsilon_k - \epsilon_{k'})/\lambda^2]^2} + \cdots$$

Flow of different N³LO chiral EFT potentials

RG

• ${}^{1}S_{0}$ from N³LO (550/600 MeV) of Epelbaum et al.

• Significant decoupling even for "soft" EFT interaction

Dick Furnstahl Nuclei at Low Resolution

Flow of different N³LO chiral EFT potentials

RG

• ${}^{3}S_{1}$ from N³LO (550/600 MeV) of Epelbaum et al.

Significant decoupling even for "soft" EFT interaction

Visualizing the softening of NN interactions

- Project non-local NN potential: $\overline{V}_{\lambda}(r) = \int d^3r' V_{\lambda}(r, r')$
 - Roughly gives action of potential on long-wavelength nucleons
- Central part (S-wave) [Note: The V_{λ} 's are all phase equivalent!]

• Tensor part (S-D mixing) [graphs from K. Wendt]

Dick Furnstahl Nuclei at Low Resolution

- Apparently different NN potentials flow to common V_{NN}
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

- Apparently different NN potentials flow to common V_{NN}
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

- Apparently different NN potentials flow to common V_{NN}
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

- Apparently different NN potentials flow to common V_{NN}
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

- Apparently different NN potentials flow to common V_{NN}
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

- Apparently different NN potentials flow to common V_{NN}
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

RG

RG

RG

RG

RG

RG

Two ways to decouple with RG equations

RG

• Lower a cutoff Λ_i in k, k', e.g., demand $dT(k, k'; k^2)/d\Lambda = 0$

 Drive the Hamiltonian toward diagonal with "flow equation" [Wegner; Glazek/Wilson (1990's)]

 \implies Both tend toward universal low-momentum interactions!

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low } k}$ -like potential with SRG?

RG

• Yes! Use $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low } k}$ -like potential with SRG?

RG

• Yes! Use $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low } k}$ -like potential with SRG?

RG

• Yes! Use $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

RG

• Yes! Use $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

RG

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

RG

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

RG

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

RG

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

RG

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

RG

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

RG

• Yes! Use $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

- Can we tailor the potential to other shapes with the SRG?
- Consider dH_s/ds = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider dH_s/ds = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider dH_s/ds = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider dH_s/ds = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider dH_s/ds = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider dH_s/ds = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider dH_s/ds = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider dH_s/ds = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider dH_s/ds = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider dH_s/ds = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider dH_s/ds = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

Variational calculations in three-nucleon systems

- Triton ground-state energy vs. size of harmonic oscillator basis (N_{max}ħω excitations)
- Rapid convergence as λ decreases
- Note softening already at $\lambda = 3 \text{ fm}^{-1}$ with N³LO EFT $\Lambda = 600 \text{ MeV} = 3 \text{ fm}^{-1}$
- Different binding energies!

Variational calculations in three-nucleon systems

- Triton ground-state energy vs. size of harmonic oscillator basis (N_{max}ħω excitations)
- Rapid convergence as λ decreases
- Note softening already at $\lambda = 3 \text{ fm}^{-1}$ with N³LO EFT $\Lambda = 600 \text{ MeV} = 3 \text{ fm}^{-1}$
- Different binding energies!
- Nuclear matter doesn't saturate at low λ

Flow equations lead to many-body operators

• Consider *a*'s and a^{\dagger} 's wrt s.p. basis and reference state:

$$\frac{dV_s}{ds} = \left[\left[\sum_{G_s} \underbrace{a^{\dagger}a}_{G_s}, \sum_{\text{2-body}} \underbrace{a^{\dagger}a^{\dagger}aa}_{\text{2-body}} \right], \sum_{\text{2-body}} \underbrace{a^{\dagger}a^{\dagger}aa}_{\text{2-body}} = \cdots + \sum_{\text{3-body}} \underbrace{a^{\dagger}a^{\dagger}a^{\dagger}aaa}_{\text{3-body}!} + \cdots \right]$$

so there will be A-body forces (and operators) generated

- Is this a problem?
 - Ok if "induced" many-body forces are same size as natural ones
- Nuclear 3-body forces already needed in unevolved potential
 - In fact, there are A-body forces (operators) initially
 - Natural hierarchy from chiral EFT
 - \implies stop flow equations before unnatural or use G_s to suppress
 - Still needed: analytic bounds on A-body growth
- SRG is a tractable method to evolve many-body operators

3D SRG evolution with \mathcal{T}_{rel} in a Jacobi HO basis

- Can evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]
 - Here: use anti-symmetric Jacobi HO basis from NCSM
 - directly obtain SRG matrix elements in HO basis
 - separate 3-body evolution not needed
- Compare 2-body only to full 2 + 3-body evolution:

Dick Furnstahl

3D SRG evolution with \mathcal{T}_{rel} in a Jacobi HO basis

- Can evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]
 - Here: use anti-symmetric Jacobi HO basis from NCSM
 - directly obtain SRG matrix elements in HO basis
 - separate 3-body evolution not needed
- Compare 2-body only to full 2 + 3-body evolution:

Dick Furnstahl

Nuclei at Low Resolution

3D SRG evolution with \mathcal{T}_{rel} in a Jacobi HO basis

- Can evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]
 - Here: use anti-symmetric Jacobi HO basis from NCSM
 - directly obtain SRG matrix elements in HO basis
 - separate 3-body evolution not needed
- Compare 2-body only to full 2 + 3-body evolution:

Dick Furnstahl

Tjon line revisited

Contributions to the ground-state energy

Look at ground-state matrix elements of KE, NN, 3N, 4N

• Clear hierarchy, but also strong cancellations at NN level

• What about the A dependence? Recent results up to ⁴⁸Ca!

Weinberg eigenvalue analysis of convergence

Born Series:
$$T(E) = V + V \frac{1}{E - H_0} V + V \frac{1}{E - H_0} V \frac{1}{E - H_0} V + \cdots$$

For fixed *E*, find (complex) eigenvalues η_ν(*E*) [Weinberg]

 $\frac{1}{E-H_0}V|\Gamma_{\nu}\rangle = \eta_{\nu}|\Gamma_{\nu}\rangle \implies T(E)|\Gamma_{\nu}\rangle = V|\Gamma_{\nu}\rangle(1+\eta_{\nu}+\eta_{\nu}^2+\cdots)$

 \implies *T* diverges if any $|\eta_{\nu}(E)| \ge 1$

[nucl-th/0602060]

Lowering the cutoff increases "perturbativeness"

• Weinberg eigenvalue analysis (repulsive) [nucl-th/0602060]

Lowering the cutoff increases "perturbativeness"

• Weinberg eigenvalue analysis (repulsive) [nucl-th/0602060]

Lowering the cutoff increases "perturbativeness"

• Weinberg eigenvalue analysis (η_{ν} at -2.22 MeV vs. density)

• Pauli blocking in nuclear matter increases it even more!

• at Fermi surface, pairing revealed by $|\eta_{
u}| > 1$

Comments on computational aspects

• Although momentum is continuous in principle, in practice represented as discrete (gaussian quadrature) grid:

• Calculations become just matrix multiplications! E.g.,

$$\langle k|V|k\rangle + \sum_{k'} \frac{\langle k|V|k'\rangle \langle k'|V|k\rangle}{(k^2 - {k'}^2)/m} + \cdots \Longrightarrow V_{ii} + \sum_{j} V_{ij} V_{jj} \frac{1}{(k_i^2 - k_j^2)/m} + \cdots$$

• 100×100 resolution is sufficient for two-body potential

Discretization of integrals \implies matrices!

• Momentum-space flow equations have integrals like:

$$I(p,q) \equiv \int dk \, k^2 \, V(p,k) V(k,q)$$

• Introduce gaussian nodes and weights $\{k_n, w_n\}$ (n = 1, N)

$$\implies \int dk f(k) \approx \sum_n w_n f(k_n)$$

• Then $I(p,q) \rightarrow I_{ij}$, where $p = k_i$ and $q = k_j$, and

$$I_{ij} = \sum_n k_n^2 w_n \, V_{in} V_{nj}
ightarrow \sum_n \widetilde{V}_{in} \widetilde{V}_{nj}$$
 where $\widetilde{V}_{ij} = \sqrt{w_i} k_i \, V_{ij} \, k_j \sqrt{w_j}$

- Lets us solve SRG equations, integral equation for phase shift, Schrödinger equation in momentum representation, ...
- In practice, N=100 gauss points more than enough for accurate nucleon-nucleon partial waves

MATLAB Code for SRG is a direct translation!

- The flow equation ^d/_{ds} V_s = [[T, H_s], H_s] is solved by discretizing, so it is just matrix multiplication.
- If the matrix V_s is converted to a vector by "reshaping", it can be fed to a differential equation solver, with the right side:

```
% V_s is a vector of the current potential; convert to square matrix
V_s_matrix = reshape(V_s, tot_pts, tot_pts);
H_s_matrix = T_matrix + V_s_matrix; % form the Hamiltontian
% Matrix for the right side of the SRG differential equation
if (strcmp(evolution,'T'))
rhs_matrix = my_commutator( my_commutator(T_matrix, H_s_matrix), ...
H_s_matrix );
```

[etc.]

% convert the right side matrix to a vector to be returned dVds = reshape(rhs_matrix, tot_pts*tot_pts, 1);

Pseudocode for SRG evolution

- Set up basis (e.g., momentum grid with gaussian quadrature or HO wave functions with N_{max})
- 2 Calculate (or input) the initial Hamiltonian and G_s matrix elements (including any weight factors)
- Solution Reshape the right side $[[G_s, H_s], H_s]$ to a vector and pass it to a coupled differential equation solver
- Integrate V_s to desired s (or $\lambda = s^{-1/4}$)
- Diagonalize H_s with standard symmetric eigensolver \implies energies and eigenvectors
- **6** Form $U = \sum_{i} |\psi_{s}^{(i)}\rangle \langle \psi_{s=0}^{(i)}|$ from the eigenvectors
- Output or plot or calculate observables

Many versions of SRG codes are in use

- Mathematica, MATLAB, Python, C++, Fortran-90
 - Instructive computational project for undergraduates!
- Once there are discretized matrices, the solver is the same with any size basis in any number of dimensions!
- Still the same solution code for a many-particle basis
- Any basis can be used
 - So far discretized momentum and harmonic oscillators
 - An accurate 3NF evolution in HO basis takes ~ 20 million matrix elements ⇒ that many differential equations
 - Other possibilities: hyperspherical harmonics, correlated gaussians, ...