Atomic Nuclei at Low Resolution

Dick Furnstahl

Department of Physics Ohio State University

July, 2013

Outline

Overview

Lowering the resolution: Similarity RG in practice

SRG Basics

Outline

Overview

Lowering the resolution: Similarity RG in practice

SRG Basics

Connecting degrees of freedom with EFT and RG

Low resolution makes physics easier + efficient

• Weinberg's Third Law of Progress in Theoretical Physics: "You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you'll be sorry!"

Low resolution makes physics easier + efficient

- Weinberg's Third Law of Progress in Theoretical Physics: "You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you'll be sorry!"
- There's an old joke about a doctor and patient ...

Patient: Doctor, doctor, it hurts when I do this!

Low resolution makes physics easier + efficient

- Weinberg's Third Law of Progress in Theoretical Physics: "You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you'll be sorry!"
- There's an old joke about a doctor and patient ...

Patient: Doctor, doctor, it hurts when I do this! **Doctor:** Then don't do that.

Digital resolution: Higher resolution is better (?)

- Computer screens, printers, digital cameras, TV's ...
- Higher resolution ⇒ more pixels
- Pixel size ≪ characteristic scale ⇒ greater detail

Diffraction and resolution

Principle of any effective low-energy description

Principle of any effective low-energy description

If system is probed at low energies, fine details not resolved

Principle of any effective low-energy description

- If system is probed at low energies, fine details not resolved
 - Use low-energy variables for low-energy processes
 - Short-distance structure can be replaced by something simpler without distorting low-energy observables
 - Could be a model or systematic (e.g., effective field theory)
- Physics interpretation often changes with resolution!

- If system is probed at low energies, fine details not resolved
 - Use low-energy variables for low-energy processes
 - Short-distance structure can be replaced by something simpler without distorting low-energy observables
 - Could be a model or systematic (e.g., effective field theory)
- Physics interpretation often changes with resolution!
- Low density ⇔ low interaction energy ⇔ low resolution (?)

Why is textbook nuclear physics so hard?

• Momentum units ($\hbar = c = 1$): typical relative momentum in large nucleus $\approx 1 \text{ fm}^{-1} \approx 200 \text{ MeV but} \dots$

• Repulsive core \implies large high-k ($\ge 2 \text{ fm}^{-1}$) components

 $V_{L=0}(k,k') = \int d^3r \, j_0(kr) \, V(r) \, j_0(k'r) = \langle k | V_{L=0} | k' \rangle \implies V_{kk'} \text{ matrix}$

- Momentum units ($\hbar = c = 1$): typical relative momentum in large nucleus $\approx 1 \text{ fm}^{-1} \approx 200 \text{ MeV but} \dots$
- Repulsive core \implies large high-k ($\ge 2 \text{ fm}^{-1}$) components

Consequences of a repulsive core

- Probability at short separations suppressed => "correlations"
- Short-distance structure high-momentum components
- Greatly complicates expansion of many-body wave functions

Many short wavelengths \Longrightarrow Large matrices

- Harmonic oscillator basis with N_{max} shells for excitations
- Graphs show convergence for *soft* chiral EFT potential (although not at optimal ħΩ for ⁶Li)

- Factorial growth of basis with $A \Longrightarrow$ limits calculations
- Too much resolution from potential \Longrightarrow mismatch of scales

Claim: Nuclear physics with textbook $V(\mathbf{r})$ is like using beer coasters!

Less painful to use a low-resolution version!

High resolution

Low resolution

- Can greatly reduce storage without distorting message
- Resolution was lowered here by "block spinning"
- Alternative: apply a low-pass filter

Low-pass filter on an image

- Much less information needed
- Long-wavelength info is preserved

Try a low-pass filter on nuclear $V(\mathbf{r})$

⇒ Set to zero high momentum ($k \ge 2 \text{ fm}^{-1}$) matrix elements and see the effect on low-energy observables

Effect of low-pass filter on observables

Effect of low-pass filter on observables

Why did our low-pass filter fail?

- Basic problem: low *k* and high *k* are coupled (mismatched dof's!)
- E.g., perturbation theory for (tangent of) phase shift:

$$\langle k|V|k\rangle + \sum_{k'} \frac{\langle k|V|k'\rangle \langle k'|V|k\rangle}{(k^2 - {k'}^2)/m} + \cdots$$

 Solution: Unitary transformation of the *H* matrix ⇒ decouple!

$$E_n = \langle \Psi_n | H | \Psi_n \rangle \quad U^{\dagger} U = 1$$

= $(\langle \Psi_n | U^{\dagger}) U H U^{\dagger} (U | \Psi_n \rangle)$
= $\langle \widetilde{\Psi}_n | \widetilde{H} | \widetilde{\Psi}_n \rangle$

• Here: Decouple using RG

S. Weinberg on the Renormalization Group

• From "Why the Renormalization Group is a good thing" "The method in its most general form can I think be understood as a way to arrange in various theories that the degrees of freedom that you're talking about are the relevant degrees of freedom for the problem at hand."

S. Weinberg on the Renormalization Group

- From "Why the Renormalization Group is a good thing" "The method in its most general form can I think be understood as a way to arrange in various theories that the degrees of freedom that you're talking about are the relevant degrees of freedom for the problem at hand."
- Improving perturbation theory in high-energy physics
 - Mismatch of energy scales can generate large logarithms
 - Shift between couplings and loop integrals to reduce logs
- Universality in critical phenomena
 - Filter out short-distance degrees of freedom

S. Weinberg on the Renormalization Group

- From "Why the Renormalization Group is a good thing" "The method in its most general form can I think be understood as a way to arrange in various theories that the degrees of freedom that you're talking about are the relevant degrees of freedom for the problem at hand."
- Improving perturbation theory in high-energy physics
 - Mismatch of energy scales can generate large logarithms
 - Shift between couplings and loop integrals to reduce logs
- Universality in critical phenomena
 - Filter out short-distance degrees of freedom
- Simplifying calculations of nuclear structure/reactions
 - Make nuclear physics look more like quantum chemistry!
 - Like other RG applications, gains can seem like magic
- RG violates the First Law of Progress in Theoretical Physics Conservation of Information: "You will get nowhere by churning equations" ⇒ but with RG you do!

Outline

Overview

Lowering the resolution: Similarity RG in practice

SRG Basics

Two ways to decouple with RG equations

• Lower a cutoff Λ_i in k, k', e.g., demand $dT(k, k'; k^2)/d\Lambda = 0$

 Drive the Hamiltonian toward diagonal with "flow equation" [Wegner; Glazek/Wilson (1990's)]

 \implies Both tend toward universal low-momentum interactions!

• In each partial wave with $\epsilon_k = \hbar^2 k^2 / M$ and $\lambda^2 = 1 / \sqrt{s}$

• In each partial wave with $\epsilon_k = \hbar^2 k^2 / M$ and $\lambda^2 = 1 / \sqrt{s}$

• In each partial wave with $\epsilon_k = \hbar^2 k^2 / M$ and $\lambda^2 = 1 / \sqrt{s}$

• In each partial wave with $\epsilon_k = \hbar^2 k^2 / M$ and $\lambda^2 = 1 / \sqrt{s}$

• In each partial wave with $\epsilon_k = \hbar^2 k^2 / M$ and $\lambda^2 = 1 / \sqrt{s}$

• In each partial wave with $\epsilon_k = \hbar^2 k^2 / M$ and $\lambda^2 = 1 / \sqrt{s}$

• In each partial wave with $\epsilon_k = \hbar^2 k^2 / M$ and $\lambda^2 = 1 / \sqrt{s}$

• In each partial wave with $\epsilon_k = \hbar^2 k^2 / M$ and $\lambda^2 = 1 / \sqrt{s}$

• In each partial wave with $\epsilon_k = \hbar^2 k^2 / M$ and $\lambda^2 = 1 / \sqrt{s}$

• In each partial wave with $\epsilon_k = \hbar^2 k^2 / M$ and $\lambda^2 = 1 / \sqrt{s}$

• In each partial wave with $\epsilon_k = \hbar^2 k^2 / M$ and $\lambda^2 = 1 / \sqrt{s}$

• In each partial wave with $\epsilon_k = \hbar^2 k^2 / M$ and $\lambda^2 = 1 / \sqrt{s}$

• In each partial wave with $\epsilon_k = \hbar^2 k^2 / M$ and $\lambda^2 = 1 / \sqrt{s}$

• In each partial wave with $\epsilon_k = \hbar^2 k^2 / M$ and $\lambda^2 = 1 / \sqrt{s}$

Low-pass filters work! [Jurgenson et al. (2008)]

flow

• Phase shifts with $V_s(k, k') = 0$ for $k, k' > k_{max}$

Overview RG Basics

Consequences of a repulsive core revisited

- Probability at short separations suppressed \implies "correlations"
- Short-distance structure ⇔ high-momentum components
- Greatly complicates expansion of many-body wave functions

Consequences of a repulsive core revisited

- Transformed potential \Longrightarrow no short-range correlations in wf!
- Potential is now non-local: $V(\mathbf{r})\psi(\mathbf{r}) \longrightarrow \int d^3\mathbf{r}' V(\mathbf{r},\mathbf{r}')\psi(\mathbf{r}')$
 - A problem for Green's Function Monte Carlo approach
 - Not a problem for many-body methods using HO matrix elements

flow

Consequences of a repulsive core revisited

- Potential is now non-local: $V(\mathbf{r})\psi(\mathbf{r}) \longrightarrow \int d^3\mathbf{r}' V(\mathbf{r},\mathbf{r}')\psi(\mathbf{r}')$
 - A problem for Green's Function Monte Carlo approach
 - Not a problem for many-body methods using HO matrix elements

Overview RG Basics flow

Visualizing the softening of NN interactions

- Project non-local NN potential: $\overline{V}_{\lambda}(r) = \int d^3r' V_{\lambda}(r, r')$
 - Roughly gives action of potential on long-wavelength nucleons
- Central part (S-wave) [Note: The V_{λ} 's are all phase equivalent!]

• Tensor part (S-D mixing) [graphs from K. Wendt]

Many short wavelengths \Longrightarrow Large matrices

- Harmonic oscillator basis with N_{max} shells for excitations
- Graphs show convergence for *soft* chiral EFT potential and evolved SRG potentials (including NNN)

 Better convergence, but rapid growth of basis still a problem (solution: importance sampling of matrix elements [R. Roth])

Outline

Overview

Lowering the resolution: Similarity RG in practice

SRG Basics

Basics: SRG flow equations [arXiv:0912.3688]

• Transform an initial hamiltonian, H = T + V:

$$H_{s}=U_{s}HU_{s}^{\dagger}\equiv T+V_{s}\;,$$

where *s* is the *flow parameter*. Differentiating wrt *s*:

$$rac{dH_s}{ds} = [\eta_s, H_s] \qquad ext{with} \qquad \eta_s \equiv rac{dU_s}{ds} U_s^\dagger = -\eta_s^\dagger \; .$$

• η_s is specified by the commutator with Hermitian G_s :

$$\eta_{s} = [G_{s}, H_{s}] ,$$

which yields the unitary flow equation (*T* held fixed),

$$\frac{dH_s}{ds} = \frac{dV_s}{ds} = [[G_s, H_s], H_s] \; .$$

• G_s determines flow \implies many choices $(T, H_D, H_{BD}, ...)$

Flow in momentum basis with $\eta(s) = [T, H_s]$

• For A = 2, project on rel. momentum states $|k\rangle$, but generic $\frac{dV_s}{ds} = [[T_{rel}, V_s], H_s] \quad \text{with} \quad T_{rel}|k\rangle = \epsilon_k |k\rangle \quad \text{and} \quad \lambda^2 = 1/\sqrt{s}$

• First term drives ${}^{1}S_{0} V_{\lambda}$ toward diagonal:

$$V_{\lambda}(k,k') = V_{\lambda=\infty}(k,k') e^{-[(\epsilon_k - \epsilon_{k'})/\lambda^2]^2} + \cdots$$

Flow in momentum basis with $\eta(s) = [T, H_s]$

• For A = 2, project on rel. momentum states $|k\rangle$, but generic $\frac{dV_s}{ds} = [[T_{rel}, V_s], H_s] \quad \text{with} \quad T_{rel}|k\rangle = |\epsilon_k\rangle \quad \text{and} \quad \lambda^2 = 1/\sqrt{s}$

• First term drives ${}^{1}S_{0} V_{\lambda}$ toward diagonal:

$$V_{\lambda}(k,k') = V_{\lambda=\infty}(k,k') e^{-[(\epsilon_k - \epsilon_{k'})/\lambda^2]^2} + \cdots$$

Flow in momentum basis with $\eta(s) = [T, H_s]$

• For A = 2, project on rel. momentum states $|k\rangle$, but generic $\frac{dV_s}{ds} = [[T_{rel}, V_s], H_s] \quad \text{with} \quad T_{rel}|k\rangle = |\epsilon_k\rangle \quad \text{and} \quad \lambda^2 = 1/\sqrt{s}$

• First term drives ${}^{1}S_{0} V_{\lambda}$ toward diagonal:

$$V_{\lambda}(k,k') = V_{\lambda=\infty}(k,k') e^{-[(\epsilon_k - \epsilon_{k'})/\lambda^2]^2} + \cdots$$

Flow of different N³LO chiral EFT potentials

• ${}^{1}S_{0}$ from N³LO (550/600 MeV) of Epelbaum et al.

• Significant decoupling even for "soft" EFT interaction

Flow of different N³LO chiral EFT potentials

• ${}^{3}S_{1}$ from N³LO (550/600 MeV) of Epelbaum et al.

• Significant decoupling even for "soft" EFT interaction

Overview RG Basics 3NF BI

- Apparently different NN potentials flow to common V_{NN}
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

Overview RG Basics 3NF BD

- Apparently different NN potentials flow to common V_{NN}
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

Overview RG Basics 3NF BE

- Apparently different NN potentials flow to common V_{NN}
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

Overview RG Basics 3NF BD

- Apparently different NN potentials flow to common V_{NN}
- Do NNN interactions evolve to universal form? [Hebeler: yes!]
Overview RG Basics 3NF BD

- Apparently different NN potentials flow to common V_{NN}
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

Overview RG Basics 3NF BD

- Apparently different NN potentials flow to common V_{NN}
- Do NNN interactions evolve to universal form? [Hebeler: yes!]

Variational calculations in three-nucleon systems

- Triton ground-state energy vs. size of harmonic oscillator basis (N_{max}ħω excitations)
- Rapid convergence as λ decreases
- Note softening already at $\lambda = 3 \text{ fm}^{-1}$ with N³LO EFT $\Lambda = 600 \text{ MeV} = 3 \text{ fm}^{-1}$
- Different binding energies!

Variational calculations in three-nucleon systems

- Triton ground-state energy vs. size of harmonic oscillator basis (N_{max}ħω excitations)
- Rapid convergence as λ decreases
- Note softening already at $\lambda = 3 \text{ fm}^{-1}$ with N³LO EFT $\Lambda = 600 \text{ MeV} = 3 \text{ fm}^{-1}$
- Different binding energies!
- Nuclear matter doesn't saturate at low λ

- Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?
- Yes! Use $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

- Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?
- Yes! Use $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

- Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?
- Yes! Use $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

- Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?
- Yes! Use $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

- Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?
- Yes! Use $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

- Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?
- Yes! Use $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

- Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?
- Yes! Use $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

• Yes! Use $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

• Yes! Use $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$ with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

