Nuclear forces and their impact on structure, reactions and astrophysics

Dick Furnstahl Ohio State University July, 2013

Lectures for Week 2

- M. Many-body problem and basis considerations (as); Many-body perturbation theory (rjf)
- T. Neutron matter and astrophysics (as); Operators 1 (rjf)
- W. Operators 2, nuclear matter (rjf); Student presentations
- Th. Impact on (exotic) nuclei (as); Student presentations
 - F. Impact on fundamental symmetries (as); From forces to density functionals (rjf)

Outline

Overview of nuclei leading to nuclear matter

Nuclear matter calculations

Operators and resolution

What do (ordinary) nuclei look like?

- Charge densities of magic nuclei (mostly) shown
- Proton density has to be "unfolded" from ρ_{charge}(r), which comes from elastic electron scattering
- Roughly constant interior density with $R \approx (1.1-1.2 \text{ fm}) \cdot A^{1/3}$
- Roughly constant surface thickness
- \implies Like a liquid drop!

What do (ordinary) nuclei look like?

Dick Eurnstahl

- Charge densities of magic nuclei (mostly) shown
- Proton density has to be "unfolded" from ρ_{charge}(r), which comes from elastic electron scattering
- Roughly constant interior density with $R \approx (1.1-1.2 \text{ fm}) \cdot A^{1/3}$
- Roughly constant surface thickness
- \implies Like a liquid drop!

Semi-empirical mass formula per nucleon

 $\frac{E_B(N,Z)}{A} = a_v - a_s A^{-1/3} - a_C \frac{Z^2}{A^{4/3}} - a_{\rm sym} \frac{(N-Z)^2}{A^2}$

• Divide terms by A = N + Z

- Rough numbers: $a_v \approx 16 \text{ MeV}, a_s \approx 18 \text{ MeV}, a_C \approx 0.7 \text{ MeV}, a_{sym} \approx 28 \text{ MeV}$
- Surface symmetry energy: $a_{\text{surf sym}}(N-Z)^2/A^{7/3}$
- Now take $A \rightarrow \infty$ with Coulomb \rightarrow 0 and fixed N/A, Z/A
- Surface terms negligible

Mass Number A

Nuclear and neutron matter energy vs. density

- Uniform with Coulomb turned off
- Density *n* (or often ρ)
- Fermi momentum $n = (\nu/6\pi^2)k_F^3$
- Neutron matter (Z = 0) has positive pressure
- Symmetric nuclear matter
 (N = Z = A/2) saturates
- *Empirical* saturation at about $E/A \approx -16$ MeV and $n \approx 0.17 \pm 0.03$ fm⁻³

Outline

Overview of nuclei leading to nuclear matter

Nuclear matter calculations

Operators and resolution

Dick Furnstahl TALENT: Nuclear forces

Recent activity on nuclear matter (from INSPIRE) ...

- A. Carbone, A. Rios and A. Polls, "Symmetric nuclear matter with chiral three-nucleon forces in the self-consistent Green's functions approach," arXiv:1307.1889 [nucl-th].
- T. Katayama and K. Saito, "Properties of dense, asymmetric nuclear matter in Dirac-Brueckner-Hartree-Fock approach," arXiv:1307.2067 [nucl-th].
- T. Inoue *et al.* [HAL QCD Collaboration], "Equation of State for Nucleonic Matter and its Quark Mass Dependence from the Nuclear Force in Lattice QCD," arXiv:1307.0299 [hep-lat].
- G. Baardsen, A. Ekstrm, G. Hagen and M. Hjorth-Jensen, "Coupled Cluster studies of infinite nuclear matter," arXiv:1306.5681 [nucl-th].
- G. Colucci, A. Sedrakian and D. H. Rischke, "Impact of relativistic chiral one-pion exchange on nuclear matter properties," arXiv:1303.1270 [nucl-th].
- J. A. Oller, "Chiral effective field theory for nuclear matter," PoS QNP **2012**, 134 (2012).
- N. Kaiser, "Chiral four-body interactions in nuclear matter," Eur. Phys. J. A 48, 135 (2012) [arXiv:1209.4556 [nucl-th]].
- M. Baldo and H. R. Moshfegh, "Correlations in nuclear matter," Phys. Rev. C 86, 024306 (2012) [arXiv:1209.2270 [nucl-th]].

Chiral Dynamics of Nuclear Matter

Munich Group (Kaiser, Fritsch, Holt, Weise, ...)

• Basic idea: ChPT loop expansion becomes EOS expansion:

$$E(k_{
m F}) = \sum_{n=2}^{\infty} k_{
m F}^n f_n(k_{
m F}/m_\pi, \Delta/m_\pi) \qquad [\Delta = M_\Delta - M_N pprox 300\,{
m MeV}]$$

• 1st pass: N's and π 's \Longrightarrow count $k_{\rm F}$'s by medium insertions

• Saturation from *Pauli-blocking* of iterated 1π -exchange

Problems with single-particle and isospin properties and ...

Chiral Dynamics of Nuclear Matter (cont.) Munich Group (Kaiser, Fritsch, Holt, Weise, ...)

• 3-Loop: Fit nuclear matter saturation, predict neutron matter

- Substantial improvement in s.p. properties, spin-stability, ...
- Issues for perturbative chiral expansion of nuclear matter:
 - higher orders, convergence? power counting?
 - relation of LEC's to free space EFT?

- Repulsive core ⇒ series diverges
- Usual solution: resum into G-matrix then do hole-line expansion

lators wunich

- Brueckner ladders order-by-order
- Repulsive core ⇒ series diverges
- Usual solution: resum into G-matrix then do hole-line expansion
- *V*_{low *k*} converges, so can choose *U* for DFT

- Brueckner ladders order-by-order
- Repulsive core ⇒ series diverges
- Usual solution: resum into G-matrix then do hole-line expansion
- V_{low k} converges, so can choose *U* for DFT
- No saturation in sight!

- Brueckner ladders order-by-order
- Repulsive core ⇒ series diverges
- Usual solution: resum into G-matrix then do hole-line expansion
- V_{low k} converges, so can choose *U* for DFT
- No saturation in sight!
- But now add 3-body!

Diagrams for MBPT to second order

Diagrams contributing to the energy per particle up to second order in MBPT, taking two- and three-body interactions into account.

Energy per particle in SNM vs. Fermi momentum

- Compare NN-only results to NN+3NF
- Two representative NN cutoffs
- Fixed 3N cutoff
- 3N constants fit to few-body nuclei
 prediction!
- Hebeler et al. (2011)

There's nothing new under the sun ...

- Is the idea that repulsive three-nucleon forces could be the dominant nm saturation mechanism a new one?
- Consider this quote:

"... if we accept the potentials ... as a semiphenomenological working basis for our calculations, we find that the many-body forces, and in particular the three-body repulsion, provide a satisfactory qualitative understanding of nuclear saturation."

• Where does it come from?

There's nothing new under the sun ...

- Is the idea that repulsive three-nucleon forces could be the dominant nm saturation mechanism a new one?
- Consider this quote:

"... if we accept the potentials ... as a semiphenomenological working basis for our calculations, we find that the many-body forces, and in particular the three-body repulsion, provide a satisfactory qualitative understanding of nuclear saturation."

• Where does it come from? Drell and Huang, 1953!

PHYSICAL REVIEW

VOLUME 91, NUMBER 6

SEPTEMBER 15, 1953

Many-Body Forces and Nuclear Saturation*†

S. D. Drell and Kerson Huang‡

Department of Physics and Laboratory of Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received June 10, 1953)

• Disclaimer: Pion forces, but not chiral symmetry! ...

Low resolution calculations of nuclear matter

- Evolve NN by RG to low momentum, fit NNN to A = 3, 4
- Predict nuclear matter in MBPT [Hebeler et al. (2011)]

- Cutoff dependence at 2nd order significantly reduced
- 3rd order contributions are small
- Remaining cutoff dependence: many-body corrections, 4NF?

Hierarchy of many-body contributions to SNM and PNM

- *E*_{NN} denotes the energy contributions from NN interactions
- E_{3N} all contributions which include at least one 3N interaction
- Discussion questions in the exercises!

Outline

Overview of nuclei leading to nuclear matter

Nuclear matter calculations

Operators and resolution

Dick Furnstahl TALENT: Nuclear forces

Unevolved long-distance operators change slowly with λ

- Matrix elements dominated by long range run slowly for λ ≥ 2 fm⁻¹
- Here: examples from the deuteron (compressed scales)
- Which is the correct answer?
- Are we using the complete operator for the experimental quadrupole moment?

Deuteron electromagnetic form factors

- *G_C*, *G_Q*, *G_M* in deuteron with chiral EFT at leading order (Valderrama et al.)
- NNLO 550/600 MeV potential
- Unchanged at low q with unevolved operators
- Independent of λ with evolved operators

Operator flow in practice [e.g., see arXiv:1008.1569]

Evolution with s of any operator O is given by:

$$O_{s} = U_{s}OU_{s}^{\dagger}$$

so Os evolves via

$$\frac{dO_s}{ds} = [[G_s, H_s], O_s]$$

- $U_s = \sum_i |\psi_i(s)\rangle \langle \psi_i(0)|$ or solve dU_s/ds flow
- Matrix elements of evolved operators are unchanged
- Consider momentum distribution $\langle \psi_d | a_q^{\dagger} a_q | \psi_d \rangle$ at q = 0.34 and 3.0 fm^{-1} in deuteron

High and low momentum operators in deuteron

• Induced two-body operator \approx regularized delta function:

High and low momentum operators in deuteron

- Decoupling => High momentum components suppressed
- Integrated value does not change, but nature of operator does
- Similar for other operators: $\langle r^2 \rangle$, $\langle Q_d \rangle$, $\langle 1/r \rangle \langle \frac{1}{r} \rangle$, $\langle G_C \rangle$, ...

Is the tail of n(k) for nuclei measurable? (cf. SRC's)

- E.g., extract from electron scattering?
- Scale- and schemedependent high-momentum tail!
- n(k) from V_{SRG} has no high-momentum components!
- No region where 1/a_s « k « 1/R (cf. large k limit for unitary gas)

'Non-observables' vs. Scheme-dependent observables

- Some quantities are *in principle* not observable
 - T.D. Lee: "The root of all symmetry principles lies in the assumption that it is impossible to observe certain basic quantities; these will be called 'non-observables'."
 - E.g., you can't measure absolute position or time or a gauge

'Non-observables' vs. Scheme-dependent observables

- Some quantities are *in principle* not observable
 - T.D. Lee: "The root of all symmetry principles lies in the assumption that it is impossible to observe certain basic quantities; these will be called 'non-observables'."
 - E.g., you can't measure absolute position or time or a gauge
- Directly measurable quantities are "clean" observables
 - E.g., cross sections and energies
 - Note: Association with a Hermitian operator is not enough!

'Non-observables' vs. Scheme-dependent observables

- Some quantities are *in principle* not observable
 - T.D. Lee: "The root of all symmetry principles lies in the assumption that it is impossible to observe certain basic quantities; these will be called 'non-observables'."
 - E.g., you can't measure absolute position or time or a gauge
- Directly measurable quantities are "clean" observables
 - E.g., cross sections and energies
 - Note: Association with a Hermitian operator is not enough!
- Scale- and scheme-dependent derived quantities
 - Critical questions to address for each quantity:
 - What is the ambiguity or convention dependence?
 - Can one convert between different prescriptions?
 - Is there a consistent extraction from experiment such that they can be compared with other processes and theory?
 - Physical quantities can be *in-practice* clean observables if scheme dependence is negligible (e.g., (*e*, 2*e*) from atoms)
 - How do we deal with dependence on the Hamiltonian?

Partial list of 'non-observables' references

- Equivalent Hamiltonians in scattering theory, H. Ekstein, (1960)
- Measurability of the deuteron D state probability, J.L. Friar, (1979)
- Problems in determining nuclear bound state wave functions, R.D. Amado, (1979)
- Nucleon nucleon bremsstrahlung: An example of the impossibility of measuring off-shell amplitudes, H.W. Fearing, (1998)
- Are occupation numbers observable?, rjf and H.-W. Hammer, (2002)
- Unitary correlation in nuclear reaction theory: Separation of nuclear reactions and spectroscopic factors, A.M. Mukhamedzhanov and A.S. Kadyrov, (2010)
- Non-observability of spectroscopic factors, B.K. Jennings, (2011)
- How should one formulate, extract, and interpret 'non-observables' for nuclei?, rjf and A. Schwenk, (2010) [in J. Phys. G focus issue on Open Problems in Nuclear Structure Theory, edited by J. Dobaczewski]

Measuring the QCD Hamiltonian: Running $\alpha_s(Q^2)$

- The QCD coupling is scale dependent ("running"): α_s(Q²) ≈ [β₀ ln(Q²/Λ²_{QCD})]⁻¹
- The QCD coupling strength α_s is scheme dependent (e.g., "V" scheme used on lattice, or MS)

• Extractions from experiment can be compared (here at *M_Z*):

 cf. QED, where α_{em}(Q²) is effectively constant for soft Q²: α_{em}(Q² = 0) ≈ 1/137 ∴ fixed H for quantum chemistry

Running QCD $\alpha_s(Q^2)$ vs. running nuclear V_λ

- The QCD coupling is scale dependent (cf. low-E QED): α_s(Q²) ≈ [β₀ ln(Q²/Λ²_{QCD})]⁻¹
- The QCD coupling strength α_s is scheme dependent (e.g., "V" scheme used on lattice, or MS)

- Vary scale ("resolution") with RG
- Scale dependence: SRG (or V_{low k}) running of initial potential with λ (decoupling or separation scale)

- Scheme dependence: AV18 vs. N³LO (plus associated 3NFs)
- But all are (NN) phase equivalent!
- Shift contributions between interaction and sums over intermediate states

Running QCD $\alpha_s(Q^2)$ vs. running nuclear V_λ

- The QCD coupling is scale dependent (cf. low-E QED): α_s(Q²) ≈ [β₀ ln(Q²/Λ²_{OCD})]⁻¹
- The QCD coupling strength α_s is scheme dependent (e.g., "V" scheme used on lattice, or MS)

- Vary scale ("resolution") with RG
- Scale dependence: SRG (or V_{low k}) running of initial potential with λ (decoupling or separation scale)

- Scheme dependence: AV18 vs. N³LO (plus associated 3NFs)
- Shift contributions between interaction and sums over intermediate states

Parton vs. nuclear momentum distributions

- The quark distribution $q(x, Q^2)$ is scale *and* scheme dependent
- x q(x, Q²) measures the share of momentum carried by the quarks in a particular x-interval
- $q(x, Q^2)$ and $q(x, Q_0^2)$ are related by RG evolution equations

Parton vs. nuclear momentum distributions

- The quark distribution $q(x, Q^2)$ is scale *and* scheme dependent
- x q(x, Q²) measures the share of momentum carried by the quarks in a particular x-interval
- $q(x, Q^2)$ and $q(x, Q_0^2)$ are related by RG evolution equations

- Deuteron momentum distribution is scale *and* scheme dependent
- Initial AV18 potential evolved with SRG from $\lambda = \infty$ to $\lambda = 1.5 \text{ fm}^{-1}$
- High momentum tail shrinks as λ decreases (lower resolution)

Factorization: high-E QCD vs. low-E nuclear

 Separation between long- and short-distance physics is not unique ⇒ introduce μ_f

- Choice of µ_f defines border between long/short distance
- Form factor *F*₂ is independent of μ_f, but pieces are not
- Q² running of f_a(x, Q²) comes from choosing µ_f to optimize extraction from experiment

Factorization: high-E QCD vs. low-E nuclear

- Separation between long- and short-distance physics is not unique ⇒ introduce μ_f
- Choice of µ_f defines border between long/short distance
- Form factor F₂ is independent of μ_f, but pieces are not
- Q² running of f_a(x, Q²) comes from choosing µ_f to optimize extraction from experiment

 Also has factorization assumptions (e.g., from D. Bazin ECT* talk, 5/2011)

- Is the factorization general/robust? (Process dependence?)
- What does it mean to be *consistent* between structure and reaction models? Treat separately? (No!)
- How does scale/scheme dependence come in?
- What are the trade-offs? (Does simpler structure always mean much more complicated reaction?)

Scale/scheme dependence: spectroscopic factors

- Spectroscopic factors for valence protons have been extracted from (e, e'p) experimental cross sections (e.g., NIKHEF 1990's at left)
- Used as canonical evidence for "correlations", particularly short-range correlations (SRC's)
- But if SFs are scale/scheme dependent, how do we explain the cross section?

Standard story for (e, e'p) [from C. Ciofi degli Atti]

- In IA: "missing" momentum $p_m = k_1$ and energy $E_m = E$
- Choose E_m to select a discrete final state for range of p_m
- FSI treated as managable add-on theoretical correction to IA

(Assumed) factorization of (e, e'p) cross section

(Assumed) factorization of (e, e'p) cross section

- Knock out p_{1/2} proton from ¹⁶O to ¹⁵N ground state in IPM
- Adjust s.p. well depth and radius to identify φ_α(**p**_m)
- Final state interactions (FSI) added using optical potential(s)

Source of scale-dependence for low-E structure

- Measured cross section as convolution: reaction \otimes structure
 - but separate parts are not unique, only the combination
- Short-range unitary transformation U leaves m.e.'s invariant:

$$\boldsymbol{O}_{mn} \equiv \langle \Psi_m | \widehat{\boldsymbol{O}} | \Psi_n \rangle = \left(\langle \Psi_m | \boldsymbol{U}^{\dagger} \right) \, \boldsymbol{U} \widehat{\boldsymbol{O}} \boldsymbol{U}^{\dagger} \left(\boldsymbol{U} | \Psi_n \rangle \right) = \langle \widetilde{\Psi}_m | \widetilde{\boldsymbol{O}} | \widetilde{\Psi}_n \rangle \equiv \widetilde{\boldsymbol{O}}_{\widetilde{m}\widetilde{n}}$$

Note: matrix elements of operator \widehat{O} itself between the transformed states are in general modified:

$$O_{\widetilde{m}\widetilde{n}} \equiv \langle \widetilde{\Psi}_m | O | \widetilde{\Psi}_n \rangle \neq O_{mn} \implies \text{e.g., } \langle \Psi_n^{\mathcal{A}-1} | a_\alpha | \Psi_0^{\mathcal{A}} \rangle \text{ changes}$$

Source of scale-dependence for low-E structure

- Measured cross section as convolution: reaction
 structure
 - but separate parts are not unique, only the combination
- Short-range unitary transformation U leaves m.e.'s invariant:

 $O_{mn} \equiv \langle \Psi_m | \widehat{O} | \Psi_n \rangle = \left(\langle \Psi_m | U^{\dagger} \right) U \widehat{O} U^{\dagger} \left(U | \Psi_n \rangle \right) = \langle \widetilde{\Psi}_m | \widetilde{O} | \widetilde{\Psi}_n \rangle \equiv \widetilde{O}_{\widetilde{m}\widetilde{n}}$

Note: matrix elements of operator \widehat{O} itself between the transformed states are in general modified:

$$O_{\widetilde{m}\widetilde{n}} \equiv \langle \widetilde{\Psi}_m | O | \widetilde{\Psi}_n \rangle \neq O_{mn} \implies \text{e.g., } \langle \Psi_n^{A-1} | a_\alpha | \Psi_0^A \rangle \text{ changes}$$

- In a low-energy effective theory, transformations that modify short-range unresolved physics ⇒ equally valid states.
 So Õ_{mn} ≠ O_{mn} ⇒ scale/scheme dependent observables.
- [Field theory version: the equivalence principle says that only on-shell quantities can be measured. Field redefinitions change off-shell dependence only. E.g., see rjf, Hammer, PLB **531**, 203 (2002).]
- RG unitary transformations change the decoupling scale change the factorization scale. Use to characterize and explore scale and scheme and process dependence!

All pieces mix with unitary transformation

• A one-body current becomes many-body (cf. EFT current):

$$\widehat{U}\widehat{\rho}(\mathbf{q})\widehat{U}^{\dagger} = \mathbf{W} + \alpha \mathbf{W} + \cdots$$

• New wf correlations have appeared (or disappeared):

- Similarly with $|\Psi_f\rangle = a^{\dagger}_{\mathbf{p}}|\Psi_n^{\mathcal{A}-1}\rangle$
- Thus spectroscopic factors are scale dependent
- Final state interactions (FSI) are also modified by \widehat{U}
- Bottom line: the cross section is unchanged *only* if all pieces are included, *with the same U*: H(λ), current operator, FSI, ...

Deuteron scale-(in)dependent observables

- V_{low k} RG transformations labeled by Λ (different V_Λ's)
 ⇒ soften interactions by lowering resolution (scale)
 ⇒ reduced short-range and tensor correlations
- Energy and asymptotic D-S ratio are unchanged (cf. ANC's)
- But D-state probability changes (cf. spectroscopic factors)
- Plan: Make analogous calculations for *A* > 2 quantities (like SFs)

- ANC's, like phase shifts, are asymptotic properties
 short-range unitary transformations do not alter them
 [e.g., see Mukhamedzhanov/Kadyrov, PRC 82 (2010)]
- In contrast, SF's rely on *interior* wave function overlap
- (Note difference in S-wave and D-wave ambiguities)

Why are ANC's different?

[based on R.D. Amado, PRC 19 (1979)]

$$\begin{array}{l} \mathbf{\hat{k}}_{2\mu}^{2} \langle \mathbf{k} | \psi_{n} \rangle + \langle \mathbf{k} | \mathbf{V} | \psi_{n} \rangle = -\frac{\gamma_{n}^{2}}{2\mu} \langle \mathbf{k} | \psi_{n} \rangle \\ \Longrightarrow \langle \mathbf{k} | \psi_{n} \rangle = -\frac{2\mu \langle \mathbf{k} | \mathbf{V} | \psi_{n} \rangle}{k^{2} + \gamma_{n}^{2}} \\ \mathbf{\hat{k}}_{2}^{2} \langle \mathbf{r} | \psi_{n} \rangle = \int \frac{d^{3}k}{(2\pi)^{3}} e^{i\mathbf{k}\cdot\mathbf{r}} \langle \mathbf{k} | \psi_{n} \rangle \\ & \stackrel{|\mathbf{r}| \to \infty}{\longrightarrow} A_{n} e^{-\gamma_{n}r} / r \end{array}$$

• extrapolate $\langle {f k} | {m V} | \psi_n \rangle$ to $k^2 = -\gamma_n^2$

Momentum space

- Or, residue from extrapolating on-shell T-matrix to deuteron pole
 invariant under unitary transformations
- Next vertex singularity at $-(\gamma + m_{\pi})^2 \Longrightarrow$ same for FSI

Final comments and questions

- Summary (and follow-up) points
 - While scale and scheme-dependent observables can be (to good approximation) unambiguous for *some* systems, they are often (generally?) not for nuclei!
 - Scale/scheme includes *consistent* Hamiltonian and operators. How dangerous is it to treat experimental analysis in pieces?
 - Unitary transformations reveal natural scheme dependence
 - Parton distribution functions as a paradigm
 - \implies Can we have controlled factorization at low energies?
- Questions for which RG/EFT perspective + tools can help
 - How should one choose a scale/scheme?
 - Can we (should we) use a reference Hamiltonian?
 - What is the scheme-dependence of SF's and other quantities?
 - What is the role of short-range/long-range correlations?
 - How do we match Hamiltonians and operators?
 - When is the assumption of one-body operators viable?
 - ... and many more!

How should one choose a scale/scheme?

- To make calculations easier or more convergent
 - QCD running coupling and scale: improved perturbation theory; choosing a gauge: e.g., Coulomb or Lorentz
 - Low-k potential: improve CI or MBPT convergence, or to make microscopic connection to shell model or ...
 - (Near-) local potential: quantum Monte Carlo methods work
- Better interpretation or intuition \Longrightarrow predictability
 - SRC phenomenology?
- Cleanest extraction from experiment
 - Can one "optimize" validity of impulse approximation?
 - Ideally extract at one scale, evolve to others using RG
- Plan: use range of scales to test calculations and physics
 - Use renormalization group to consistently relate scales and quantitatively probe ambiguities (e.g., in spectroscopic factors)
 - Match Hamiltonians and operators (EFT) and then use RG

What parts of wf's can be extracted from experiment?

- Measurable: asymptotic (IR) properties like phase shifts, ANC's
- Not observables, but well-defined theoretically given a Hamiltonian: interior quantities like spectroscopic factors
 - These depend on the scale and the scheme
 - Extraction from experiment requires robust factorization of structure and reaction; only the combination is scale/scheme independent (e.g., cross sections) [What if weakly dependent?]
- What about the high-momentum tails of momentum distributions?
 - Consider cold atoms in the unitary regime
 - Compare to nuclear case
- Short-range correlations (SRCs) depend on the Hamiltonian *and* the resolution scale (cf. parton distribution functions)
- So might expect Hamiltonian- and resolution-dependent but *A*-independent high-momentum tails of wave functions
 - Universal extrapolation for different A, but λ_{SRG} dependent

When are wave functions measurable? [W. Dickhoff] Atoms studied with the (e, 2e) reaction

 But compare approximations for (e, 2e) on atoms to those for (e, e'p) on nuclei! (Impulse approx., FSI, vertex, ...)

Spectroscopic factors in atoms

For a bound final N-1 state the spectroscopic factor is given by

$$S = \int d\vec{p} \left| \left\langle \Psi_n^{N-1} \left| a_{\vec{p}} \right| \Psi_0^N \right\rangle \right|$$

For H and He the 1s electron spectroscopic factor is 1 For Ne the valence 2p electron has S=0.92 with two additional fragments, each carrying 0.04, at higher energy.

One-body scattering, small scheme dependence \implies robust SF

When can you measure a potential?

• Think about quantum mechanical convolution for energy

$$\boldsymbol{E} = \int \, d\mathbf{x} \, \Psi^*(\mathbf{x}) (T+V) \Psi(\mathbf{x})$$

• (Schematic: e.g., here $\mathbf{x} = {\mathbf{x}_1, \mathbf{x}_2}$)

• When can we isolate H = T + V from $|\Psi(\mathbf{x})|^2$?

- Need very heavy particles or long-distances so that wave functions can be approximated as delta functions
- Examples
 - classical limit (e.g., gravitational potential)
 - heavy quark potential on a lattice
 - Coulomb potential in atoms/molecules
- In nuclear case, can change both Ψ(**x**) and V(**x**) at short distance and leave *E* unchanged ⇒ not measurable
- In field theory formulation, freedom to shift between interaction vertex and propagator for exchanged particle

Impulse approximation

- The discussion always starts with: "If we assume "
 - Usually that the impulse approximation is good (one-body current and one active nucleon), and increasingly good with larger momentum transfer
 - Final state interactions neglected (and then assumed to be accounted for in a model-independent way)
- This brings to mind some quotes:
 - "If my grandmother had wheels, she'd be a bicycle."
 - "Hope is not a plan!" (or a reliable guide to experiment)
- How well the impulse approximation works depends on the system and probe (process dependent)
 - Works well: electron scattering from atoms, neutron scattering from liquid helium (??? maybe not in detail)
 - Large corrections: nuclear reactions!
- Should we choose a scheme in which the impulse approximation is best satisfied?