Nuclear forces and their impact on structure, reactions and astrophysics

Dick Furnstahl Ohio State University July, 2013

Lectures for Week 2

- **M.** Many-body problem and basis considerations (as); Many-body perturbation theory (rjf)
- **T.** Neutron matter and astrophysics (as); Operators 1 (rjf)
- **W.** Operators 2, nuclear matter (rjf); Student presentations
- **Th.** Impact on (exotic) nuclei (as); Student presentations
	- **F.** Impact on fundamental symmetries (as); From forces to density functionals (rjf)

Outline

[Overview of nuclei leading to nuclear matter](#page-1-0)

[Nuclear matter calculations](#page-7-0)

[Operators and resolution](#page-21-0)

Dick Furnstahl [TALENT: Nuclear forces](#page-0-0)

What do (ordinary) nuclei look like?

- Charge densities of magic nuclei (mostly) shown
- Proton density has to be "unfolded" from $\rho_{\text{charge}}(r)$, which comes from elastic electron scattering
- Roughly constant interior density with $R \approx (1.1 - 1.2 \, \text{fm}) \cdot A^{1/3}$
- Roughly constant surface thickness
- \Longrightarrow Like a liquid drop!

What do (ordinary) nuclei look like?

- Charge densities of magic nuclei (mostly) shown
- Proton density has to be "unfolded" from $\rho_{\text{charge}}(r)$, which comes from elastic electron scattering
- Roughly constant interior density with $R \approx (1.1 - 1.2 \, \text{fm}) \cdot A^{1/3}$
- Roughly constant surface thickness
- \Longrightarrow Like a liquid drop!

Semi-empirical mass formula per nucleon

Mass Number A

Nuclear and neutron matter energy vs. density

- Uniform with Coulomb turned off
- Density *n* (or often ρ)
- Fermi momentum $n=(\nu/6\pi^2)k_{\rm F}^3$
- Neutron matter $(Z = 0)$ has positive pressure
- Symmetric nuclear matter $(N = Z = A/2)$ saturates
- *Empirical* saturation at about $E/A \approx -16$ MeV and $n \approx 0.17 + 0.03$ fm⁻³

Outline

[Overview of nuclei leading to nuclear matter](#page-1-0)

[Nuclear matter calculations](#page-7-0)

[Operators and resolution](#page-21-0)

Dick Furnstahl [TALENT: Nuclear forces](#page-0-0)

Recent activity on nuclear matter (from INSPIRE) . . .

- A. Carbone, A. Rios and A. Polls, "Symmetric nuclear matter with chiral three-nucleon forces in the self-consistent Green's functions approach," arXiv:1307.1889 [nucl-th].
- T. Katayama and K. Saito, "Properties of dense, asymmetric nuclear matter in Dirac-Brueckner-Hartree-Fock approach," arXiv:1307.2067 [nucl-th].
- **T.** Inoue *et al.* [HAL QCD Collaboration], "Equation of State for Nucleonic Matter and its Quark Mass Dependence from the Nuclear Force in Lattice QCD," arXiv:1307.0299 [hep-lat].
- G. Baardsen, A. Ekstrm, G. Hagen and M. Hjorth-Jensen, "Coupled Cluster studies of infinite nuclear matter," arXiv:1306.5681 [nucl-th].
- G. Colucci, A. Sedrakian and D. H. Rischke, "Impact of relativistic chiral one-pion exchange on nuclear matter properties," arXiv:1303.1270 [nucl-th].
- J. A. Oller, "Chiral effective field theory for nuclear matter," PoS QNP **2012**, 134 (2012).
- N. Kaiser, "Chiral four-body interactions in nuclear matter," Eur. Phys. J. A **48**, 135 (2012) [arXiv:1209.4556 [nucl-th]].
- M. Baldo and H. R. Moshfegh, "Correlations in nuclear matter," Phys. Rev. C **86**, 024306 (2012) [arXiv:1209.2270 [nucl-th]].

Chiral Dynamics of Nuclear Matter

Munich Group (Kaiser, Fritsch, Holt, Weise, . . .)

• Basic idea: ChPT loop expansion becomes EOS expansion:

$$
E(k_{\rm F})=\sum_{n=2}^{\infty}k_{\rm F}^n f_n(k_{\rm F}/m_{\pi},\Delta/m_{\pi}) \qquad [\Delta=M_{\Delta}-M_{N}\approx 300\,\text{MeV}]
$$

• 1st pass: N's and π 's \implies count k_F 's by medium insertions

$$
\bigoplus \bigoplus \bigoplus \bigotimes \bigoplus \bigoplus \bigotimes \mathbf{+} \bigodot \mathbf{+}
$$

• Saturation from *Pauli-blocking* of iterated 1π-exchange

• Problems with single-particle and isospin properties and ...

Chiral Dynamics of Nuclear Matter (cont.) Munich Group (Kaiser, Fritsch, Holt, Weise, . . .)

3-Loop: Fit nuclear matter saturation, predict neutron matter

- Substantial improvement in s.p. properties, spin-stability, ...
- Issues for perturbative chiral expansion of nuclear matter:
	- higher orders, convergence? power counting?
	- relation of LEC's to free space EFT?

- Repulsive core \implies series diverges
- Usual solution: resum into G-matrix then do hole-line expansion

- Repulsive core \implies series diverges
- Usual solution: resum into G-matrix then do hole-line expansion
- *V*low *^k* converges, so can choose *U* for DFT

- Repulsive core \implies series diverges
- Usual solution: resum into G-matrix then do hole-line expansion
- *V*low *^k* converges, so can choose *U* for DFT
- No saturation in sight!

- Repulsive core \implies series diverges
- Usual solution: resum into G-matrix then do hole-line expansion
- *V*low *^k* converges, so can choose *U* for DFT
- No saturation in sight!
- But now add 3-body!

Diagrams for MBPT to second order

Diagrams contributing to the energy per particle up to second order in MBPT, taking two- and three-body interactions into account.

Energy per particle in SNM vs. Fermi momentum

- Compare NN-only results to NN+3NF
- Two representative NN cutoffs
- **•** Fixed 3N cutoff
- 3N constants fit to few-body nuclei \implies prediction!
-

There's nothing new under the sun . . .

- Is the idea that repulsive three-nucleon forces could be the dominant nm saturation mechanism a new one?
- Consider this quote:

". . . if we accept the potentials . . . as a semiphenomenological working basis for our calculations, we find that the many-body forces, and in particular the three-body repulsion, provide a satisfactory qualitative understanding of nuclear saturation."

• Where does it come from?

There's nothing new under the sun . . .

- Is the idea that repulsive three-nucleon forces could be the dominant nm saturation mechanism a new one?
- Consider this quote:

". . . if we accept the potentials . . . as a semiphenomenological working basis for our calculations, we find that the many-body forces, and in particular the three-body repulsion, provide a satisfactory qualitative understanding of nuclear saturation."

Where does it come from? Drell and Huang, 1953!

PHYSICAL REVIEW

VOLUME 91, NUMBER 6

SEPTEMBER 15, 1953

Many-Body Forces and Nuclear Saturation*†

S. D. DRELL AND KERSON HUANGI

Department of Physics and Laboratory of Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received June 10, 1953)

Disclaimer: Pion forces, but not chiral symmetry! . . .

Low resolution calculations of nuclear matter

- Evolve NN by RG to low momentum, fit NNN to $A = 3, 4$
- Predict nuclear matter in MBPT [Hebeler et al. (2011)]

- Cutoff dependence at 2nd order significantly reduced
- 3rd order contributions are small
- Remaining cutoff dependence: many-body corrections, 4NF?

Hierarchy of many-body contributions to SNM and PNM

- E_{NN} denotes the energy contributions from NN interactions
- E_{3N} all contributions which include at least one 3N interaction
- Discussion questions in the exercises!

Outline

[Overview of nuclei leading to nuclear matter](#page-1-0)

[Nuclear matter calculations](#page-7-0)

[Operators and resolution](#page-21-0)

Dick Furnstahl [TALENT: Nuclear forces](#page-0-0)

Unevolved long-distance operators change slowly with λ

- Matrix elements dominated by long range run slowly for $\lambda \ge 2$ fm⁻¹
- Here: examples from the deuteron (compressed scales)
- Which is the correct answer?
- Are we using the complete operator for the experimental quadrupole moment?

Deuteron electromagnetic form factors

- *G_C*, *G_O*, *G_M* in deuteron with chiral EFT at leading order (Valderrama et al.)
- NNLO 550/600 MeV potential
- Unchanged at low *q* with unevolved operators
- Independent of λ with evolved operators

Operator flow in practice [e.g., see arXiv:1008.1569]

Evolution with *s* of any operator *O* is given by:

$$
O_s = U_s O U_s^\dagger
$$

so *O^s* evolves via

$$
\frac{dO_s}{ds}=[[G_s,H_s],O_s]
$$

- $U_s = \sum_i |\psi_i(s)\rangle \langle \psi_i(0)|$ or solve *dUs*/*ds* flow
- **•** Matrix elements of evolved operators are unchanged
- **Consider momentum** $\textsf{distribution} < \psi_{\boldsymbol{d}} |\boldsymbol{a}^{\dagger}_{\boldsymbol{q}} \boldsymbol{a}_{\boldsymbol{q}}| \psi_{\boldsymbol{d}} > 0$ at $q = 0.34$ and 3.0 fm⁻¹ in deuteron

High and low momentum operators in deuteron

High and low momentum operators in deuteron

- **Decoupling** \Rightarrow High momentum components suppressed
- **Integrated value does not change, but nature of operator does**
- Similar for other operators: $\langle r^2 \rangle$, $\langle Q_d \rangle$, $\langle 1/r \rangle \langle \frac{1}{r} \rangle$, $\langle G_C \rangle$, ...

Is the tail of *n*(*k*) **for nuclei measurable? (cf. SRC's)**

- E.g., extract from electron scattering?
- Scale- and schemedependent high-momentum tail!
- $n(k)$ from V_{SRG} has *no* high-momentum components!
- No region where $1/a_s \ll k \ll 1/R$ (cf. large *k* limit for unitary gas)

'Non-observables' vs. Scheme-dependent observables

- Some quantities are *in principle* not observable
	- T.D. Lee: "The root of all symmetry principles lies in the assumption that it is impossible to observe certain basic quantities; these will be called 'non-observables'."
	- E.g., you can't measure absolute position or time or a gauge

'Non-observables' vs. Scheme-dependent observables

- Some quantities are *in principle* not observable
	- T.D. Lee: "The root of all symmetry principles lies in the assumption that it is impossible to observe certain basic quantities; these will be called 'non-observables'."
	- E.g., you can't measure absolute position or time or a gauge
- Directly measurable quantities are "clean" observables
	- E.g., cross sections and energies
	- Note: Association with a Hermitian operator is not enough!

'Non-observables' vs. Scheme-dependent observables

- Some quantities are *in principle* not observable
	- T.D. Lee: "The root of all symmetry principles lies in the assumption that it is impossible to observe certain basic quantities; these will be called 'non-observables'."
	- E.g., you can't measure absolute position or time or a gauge
- Directly measurable quantities are "clean" observables
	- E.g., cross sections and energies
	- Note: Association with a Hermitian operator is not enough!
- Scale- and scheme-dependent derived quantities
	- Critical questions to address for each quantity:
		- What is the ambiguity or convention dependence?
		- Can one convert between different prescriptions?
		- Is there a consistent extraction from experiment such that they can be compared with other processes and theory?
	- Physical quantities can be *in-practice* clean observables if scheme dependence is negligible (e.g., (*e*, 2*e*) from atoms)
	- How do we deal with dependence on the Hamiltonian?

Partial list of 'non-observables' references

- *Equivalent Hamiltonians in scattering theory*, H. Ekstein, (1960)
- *Measurability of the deuteron D state probability*, J.L. Friar, (1979)
- *Problems in determining nuclear bound state wave functions*, R.D. Amado, (1979)
- *Nucleon nucleon bremsstrahlung: An example of the impossibility of measuring off-shell amplitudes*, H.W. Fearing, (1998)
- *Are occupation numbers observable?*, rjf and H.-W. Hammer, (2002)
- *Unitary correlation in nuclear reaction theory: Separation of nuclear reactions and spectroscopic factors*, A.M. Mukhamedzhanov and A.S. Kadyrov, (2010)
- *Non-observability of spectroscopic factors*, B.K. Jennings, (2011)
- *How should one formulate, extract, and interpret 'non-observables' for nuclei?*, rjf and A. Schwenk, (2010) [in J. Phys. G focus issue on Open Problems in Nuclear Structure Theory, edited by J. Dobaczewski]

Measuring the QCD Hamiltonian: Running α*s*(*Q*²)

- The QCD coupling is *scale* dependent ("running"): $\alpha_{s}(Q^2) \approx [\beta_0 \ln(Q^2/\Lambda_{\rm QCD}^2)]^{-1}$
- The QCD coupling strength α*^s* is *scheme* dependent (e.g., "V" scheme used on lattice, or $\overline{\text{MS}}$)

• Extractions from experiment can be compared (here at M_z):

cf. QED, where $\alpha_{\it em} (Q^2)$ is effectively constant for soft *Q*² : $\alpha_{em}(Q^2=0) \approx 1/137$ ∴ fixed H for quantum chemistry

Running QCD α*s*(*Q*²) **vs. running nuclear** *V*^λ

- The QCD coupling is *scale* dependent (cf. low-E QED): $\alpha_{s}(Q^2) \approx [\beta_0 \ln(Q^2/\Lambda_{\rm QCD}^2)]^{-1}$
- The QCD coupling strength α*^s* is *scheme* dependent (e.g., "V" scheme used on lattice, or $\overline{\text{MS}}$)
- Vary scale ("resolution") with RG
- Scale dependence: SRG (or $V_{\text{low }k}$) running of initial potential with λ (decoupling or separation scale)

- \bullet Scheme dependence: AV18 vs. N³LO (plus associated 3NFs)
- But all are (NN) phase equivalent!
- **•** Shift contributions between interaction and sums over intermediate states

Running QCD α*s*(*Q*²) **vs. running nuclear** *V*^λ

- The QCD coupling is *scale* dependent (cf. low-E QED): $\alpha_{s}(Q^2) \approx [\beta_0 \ln(Q^2/\Lambda_{\rm QCD}^2)]^{-1}$
- The QCD coupling strength α*^s* is *scheme* dependent (e.g., "V" scheme used on lattice, or $\overline{\text{MS}}$)
- Vary scale ("resolution") with RG
- Scale dependence: SRG (or $V_{\text{low }k}$) running of initial potential with λ (decoupling or separation scale)
- **•** Project non-local NN potential to $\textsf{visualize: } \overline{V}_\lambda(r) = \int\!d^3r'\; V_\lambda(r,r')$

- \bullet Scheme dependence: AV18 vs. N^3LO (plus associated 3NFs)
- **•** Shift contributions between interaction and sums over intermediate states

Parton vs. nuclear momentum distributions

- The quark distribution $q(x, Q^2)$ is scale *and* scheme dependent
- x $q(x,Q^2)$ measures the share of momentum carried by the quarks in a particular *x*-interval
- $q(x, Q^2)$ and $q(x, Q^2_0)$ are related by RG evolution equations

Parton vs. nuclear momentum distributions

- The quark distribution $q(x, Q^2)$ is scale *and* scheme dependent
- x $q(x,Q^2)$ measures the share of momentum carried by the quarks in a particular *x*-interval
- $q(x, Q^2)$ and $q(x, Q^2_0)$ are related by RG evolution equations

- Deuteron momentum distribution is scale *and* scheme dependent
- Initial AV18 potential evolved with SRG from $\lambda = \infty$ to $\lambda = 1.5$ fm⁻¹
- **High momentum tail shrinks as** λ decreases (lower resolution)

Factorization: high-E QCD vs. low-E nuclear !"#\$%&"'()&*!&*+*,\$'\$"%,)%-)-'#\$%&".'\$"%,/ !"#\$%&"'()&*!&*+*,\$'\$"%,)%-)-'#\$%&".'\$"%,/

July, 25-28 2005 PHENIX Spin Fest @ RIKEN Wako 20 • Separation between long- and short-distance physics is not $J_{\rm c}$, 25-28 2005 PHENIX Spin Fest $\mathcal{P}_{\rm c}$ and 2005 PHENIX Spin Fest $\mathcal{P}_{\rm c}$ \mathcal{L} and \mathcal{L} is 25-28 2005 μ ₁ unique \Longrightarrow introduce μ_f

- Choice of μ *f* defines border between long/short distance
- \bullet Form factor F_2 is independent of μ_f , but pieces are not
- *Q*² running of *fa*(*x*, *Q*²) comes from choosing μ_f to optimize extraction from experiment

Factorization: high-E QCD vs. low-E nuclear !"#\$%&"'()&*!&*+*,\$'\$"%,)%-)-'#\$%&".'\$"%,/ !"#\$%&"'()&*!&*+*,\$'\$"%,)%-)-'#\$%&".'\$"%,/

- \mathcal{L} July, 25-28 2005 PHENIX Spin Fest \mathcal{L} • Separation between long- and (Process of short-distance physics is not \mathcal{L} and \mathcal{L} is 25-28 2005 μ ₁ unique \Longrightarrow introduce μ_f
	- Choice of μ *f* defines border between long/short distance
	- \bullet Form factor F_2 is independent of μ_f , but pieces are not
	- *Q*² running of *fa*(*x*, *Q*²) comes from choosing μ_f to optimize extraction from experiment

Also has factorization assumptions (e.g., from D. Bazin ECT^* talk, $5/2011)$ Conundrum

- **•** Is the factorization general/robust? (Process dependence?) reaction model
- and Phenix Spin Fest on Ricent Developments in Transfer and Reactions, May 9-13, 2012, Trento, Italy What does it mean to be *consistent* models? Treat separately? (No!)
	- **•** How does scale/scheme dependence come in?
	- What are the trade-offs? (Does simpler structure always mean much more complicated reaction?)

Scale/scheme dependence: spectroscopic factors

- Spectroscopic factors for valence protons have been extracted from (*e*, *e* ⁰*p*) experimental cross sections (e.g., NIKHEF 1990's at left)
- Used as canonical evidence for "correlations", particularly short-range correlations (SRC's)
- But if SFs are scale/scheme dependent, how do we explain the cross section?

Standard story for (*e*, *e* ⁰*p*) **[from C. Ciofi degli Atti]**

- **•** In IA: "missing" momentum $p_m = k_1$ and energy $E_m = E$
- Choose *E^m* to select a discrete final state for range of *p^m*
- FSI treated as managable *add-on* theoretical correction to IA

(Assumed) factorization of $(e, e'p)$ cross section \mathcal{L} . Let

(Assumed) factorization of $(e,e^{\prime}\rho)$ cross section

- \bullet Knock out $p_{1/2}$ proton from 16 O to $15N$ ground state in IPM
- **o** Adjust s.p. well depth and radius to identify $\phi_\alpha({\mathbf p}_m)$
- **•** Final state interactions (FSI) added using optical potential(s)

Source of scale-dependence for low-E structure

- Measured cross section as convolution: reaction⊗structure
	- but separate parts are not unique, *only* the combination
- Short-range unitary transformation *U* leaves m.e.'s invariant:

$$
O_{mn} \equiv \langle \Psi_m | \widehat{O} | \Psi_n \rangle = \left(\langle \Psi_m | U^{\dagger} \right) U \widehat{O} U^{\dagger} \left(U | \Psi_n \rangle \right) = \langle \widetilde{\Psi}_m | \widetilde{O} | \widetilde{\Psi}_n \rangle \equiv \widetilde{O}_{\widetilde{m}\widetilde{n}}
$$

Note: matrix elements of operator \hat{O} itself between the transformed states are in general modified:

$$
O_{\widetilde{m}\widetilde{n}} \equiv \langle \widetilde{\Psi}_m | O | \widetilde{\Psi}_n \rangle \neq O_{mn} \quad \Longrightarrow \quad \text{e.g., } \langle \Psi_n^{A-1} | a_\alpha | \Psi_0^A \rangle \text{ changes}
$$

Source of scale-dependence for low-E structure

- Measured cross section as convolution: reaction⊗structure
	- but separate parts are not unique, *only* the combination
- Short-range unitary transformation *U* leaves m.e.'s invariant:

 $O_{mn} \equiv \langle \Psi_m | O | \Psi_n \rangle = (\langle \Psi_m | U^{\dagger} \rangle \overline{U} \overline{O} U^{\dagger} \overline{U} | \Psi_n \rangle) = \langle \overline{\Psi}_m | O | \Psi_n \rangle \equiv O_{\widetilde{m}n}$

Note: matrix elements of operator \hat{O} itself between the transformed states are in general modified:

$$
O_{\widetilde{m}\widetilde{n}} \equiv \langle \widetilde{\Psi}_m | O | \widetilde{\Psi}_n \rangle \neq O_{mn} \quad \Longrightarrow \quad \text{e.g., } \langle \Psi_n^{A-1} | a_\alpha | \Psi_0^A \rangle \text{ changes}
$$

- In a low-energy effective theory, transformations that modify *short-range* unresolved physics ⇒ equally valid states. $\text{So } O_{mn} \neq O_{mn} \Longrightarrow$ scale/scheme dependent observables.
- [Field theory version: the equivalence principle says that only on-shell quantities can be measured. Field redefinitions change off-shell dependence only. E.g., see rjf, Hammer, PLB **531**, 203 (2002).]
- RG unitary transformations change the decoupling scale \implies change the factorization scale. Use to characterize and explore scale and scheme and process dependence!

All pieces mix with unitary transformation

A one-body current becomes many-body (cf. EFT current): ¹²C(e, e! p)X ¹²C(e, e! p)X ¹²C(e, e! p)X

$$
\widehat{U}\widehat{\rho}(\mathbf{q})\widehat{U}^{\dagger} = \text{www} + \alpha \text{ www} + \cdots
$$

New wf correlations have appeared (or disappeared):

Similarly with $|\Psi_f\rangle = a_{\mathsf{p}}^{\dagger} |\Psi_n^{A-1}\rangle$

Thus *spectroscopic factors* are scale dependent

Final state interactions (FSI) are also modified by *U*b

Bottom line: the cross section is unchanged *only* if all pieces are included, *with the same U:* $H(\lambda)$, current operator, FSI, ...

Deuteron scale-(in)dependent observables

- **•** *V*_{low *k*} RG transformations labeled by Λ (different *V*^λ's) \implies soften interactions by lowering resolution (scale) \implies reduced short-range and tensor correlations
- Energy and asymptotic D-S ratio are unchanged (cf. ANC's)
- But D-state probability changes (cf. spectroscopic factors)
- **•** Plan: Make analogous calculations for $A > 2$ quantities (like SFs)

ANC's, like phase shifts, are asymptotic properties \implies short-range unitary transformations do not alter them [e.g., see Mukhamedzhanov/Kadyrov, PRC **82** (2010)]

• In contrast, SF's rely on *interior* wave function overlap

(Note difference in S-wave and D-wave ambiguities)

Why are ANC's different? Momentum space

[based on R.D. Amado, PRC **19** (1979)]

$$
\begin{aligned}\n\bullet \quad & \frac{k^2}{2\mu} \langle \mathbf{k} | \psi_n \rangle + \langle \mathbf{k} | V | \psi_n \rangle = -\frac{\gamma_n^2}{2\mu} \langle \mathbf{k} | \psi_n \rangle \\
\Longrightarrow \langle \mathbf{k} | \psi_n \rangle = -\frac{2\mu \langle \mathbf{k} | V | \psi_n \rangle}{k^2 + \gamma_n^2}\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\bullet \quad & \langle \mathbf{r} | \psi_n \rangle = \int \frac{d^3k}{(2\pi)^3} e^{i\mathbf{k} \cdot \mathbf{r}} \langle \mathbf{k} | \psi_n \rangle \\
& \xrightarrow{|\mathbf{r}| \to \infty} A_n e^{-\gamma_n r} / r\n\end{aligned}
$$

4 extrapolate $\langle \mathbf{k} | V | \psi_n \rangle$ to $k^2 = -\gamma_n^2$

- Or, residue from extrapolating on-shell T-matrix to deuteron pole \implies invariant under unitary transformations
- Next vertex singularity at $-(\gamma + m_\pi)^2 \Longrightarrow$ same for FSI

Final comments and questions

- Summary (and follow-up) points
	- While scale and scheme-dependent observables can be (to good approximation) unambiguous for *some* systems, they are often (generally?) not for nuclei!
	- Scale/scheme includes *consistent* Hamiltonian and operators. How dangerous is it to treat experimental analysis in pieces?
	- Unitary transformations reveal *natural* scheme dependence
	- Parton distribution functions as a paradigm
		- \implies Can we have controlled factorization at low energies?
- Questions for which RG/EFT perspective + tools can help
	- How should one choose a scale/scheme?
	- Can we (should we) use a reference Hamiltonian?
	- What *is* the scheme-dependence of SF's and other quantities?
	- What is the role of short-range/long-range correlations?
	- How do we match Hamiltonians and operators?
	- When is the assumption of one-body operators viable?
	- ... and many more!

How should one choose a scale/scheme?

- To make calculations easier or more convergent
	- QCD running coupling and scale: improved perturbation theory; choosing a gauge: e.g., Coulomb or Lorentz
	- Low-*k* potential: improve CI or MBPT convergence, or to make microscopic connection to shell model or . . .
	- (Near-) local potential: quantum Monte Carlo methods work
- Better interpretation or intuition \implies predictability
	- SRC phenomenology?
- Cleanest extraction from experiment
	- Can one "optimize" validity of impulse approximation?
	- Ideally extract at one scale, evolve to others using RG
- Plan: use range of scales to test calculations and physics
	- Use renormalization group to consistently relate scales and quantitatively probe ambiguities (e.g., in spectroscopic factors)
	- Match Hamiltonians and operators (EFT) and then use RG

What parts of wf's can be extracted from experiment?

- Measurable: asymptotic (IR) properties like phase shifts, ANC's
- Not observables, but well-defined theoretically given a Hamiltonian: interior quantities like spectroscopic factors
	- These depend on the scale and the scheme
	- Extraction from experiment requires robust factorization of structure and reaction; only the combination is scale/scheme independent (e.g., cross sections) [What if weakly dependent?]
- What about the high-momentum tails of momentum distributions?
	- Consider cold atoms in the unitary regime
	- Compare to nuclear case
- Short-range correlations (SRCs) depend on the Hamiltonian *and* the resolution scale (cf. parton distribution functions)
- So might expect Hamiltonian- and resolution-dependent but *A*-independent high-momentum tails of wave functions
	- Universal extrapolation for different A, but λ_{SRG} dependent

When are wave functions measurable? [W. Dickhoff] Atoms studied with the (e,2e) reaction

But compare approximations for (*e*, 2*e*) on atoms to those for (*e*, *e'p*) on nuclei! (Impulse approx., FSI, vertex, ...)

Spectroscopic factors in atoms

For a bound final *N*-1 state the spectroscopic factor is given by

$$
S = \int d\vec{p} \left| \left\langle \Psi_n^{N-1} \left| a_{\vec{p}} \right| \Psi_0^N \right\rangle \right|^2
$$

For H and He the 1*s* electron spectroscopic factor is 1

For Ne the valence 2*p* electron has *S*=0.92 with two additional fragments,

each carrying 0.04, at higher energy.

One-body scattering, small scheme dependence \Longrightarrow robust SF

When can you measure a potential?

• Think about quantum mechanical convolution for energy

$$
\pmb{\mathcal{E}} = \int \, d\mathbf{x} \, \Psi^*(\mathbf{x}) (\mathcal{T} + \mathcal{V}) \Psi(\mathbf{x})
$$

• (Schematic: e.g., here $\mathbf{x} = {\mathbf{x}_1, \mathbf{x}_2}$)

When can we isolate $H = T + V$ from $|\Psi(\mathbf{x})|^2$?

- Need very heavy particles or long-distances so that wave functions can be approximated as delta functions
- **•** Examples
	- classical limit (e.g., gravitational potential)
	- heavy quark potential on a lattice
	- Coulomb potential in atoms/molecules
- **•** In nuclear case, can change both $\Psi(\mathbf{x})$ and $V(\mathbf{x})$ at short distance and leave E unchanged \implies not measurable
- In field theory formulation, freedom to shift between interaction vertex and propagator for exchanged particle

Impulse approximation

- The discussion always starts with: "If we assume . . . "
	- Usually that the impulse approximation is good (one-body current and one active nucleon), and increasingly good with larger momentum transfer
	- Final state interactions neglected (and then assumed to be accounted for in a model-independent way)
- This brings to mind some quotes:
	- "If my grandmother had wheels, she'd be a bicycle."
	- "Hope is not a plan!" (or a reliable quide to experiment)
- How well the impulse approximation works depends on the system and probe (process dependent)
	- Works well: electron scattering from atoms, neutron scattering from liquid helium (??? maybe not in detail)
	- Large corrections: nuclear reactions!
- Should we choose a scheme in which the impulse approximation is best satisfied?