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Lectures for Week 2

M. Many-body problem and basis considerations (as);
Many-body perturbation theory (rjf)

T. Neutron matter and astrophysics (as); Operators 1 (rjf)

W. Operators 2, nuclear matter (rjf); Student presentations

Th. Impact on (exotic) nuclei (as); Student presentations

F. Impact on fundamental symmetries (as); From forces to density
functionals (rjf)



Overview NM Operators

Outline

Overview of nuclei leading to nuclear matter

Nuclear matter calculations

Operators and resolution
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Overview NM Operators

What do (ordinary) nuclei look like?

Charge densities of magic
nuclei (mostly) shown

Proton density has to be
“unfolded” from ρcharge(r),
which comes from elastic
electron scattering

Roughly constant interior
density with
R ≈ (1.1–1.2 fm) · A1/3

Roughly constant surface
thickness

=⇒ Like a liquid drop!
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Overview NM Operators

Semi-empirical mass formula (A = N + Z )

EB(N,Z ) = av A− asA2/3 − aC
Z 2

A1/3 − asym
(N − Z )2

A
+ ∆

Many predictions!

Rough numbers: av ≈ 16 MeV,
as ≈ 18 MeV, aC ≈ 0.7 MeV,
asym ≈ 28 MeV

Pairing ∆ ≈ ±12/
√

A MeV
(even-even/odd-odd) or 0
[or 43/A3/4 MeV or . . . ]

Surface symmetry energy:
asurf sym(N − Z )2/A4/3

Much more sophisticated mass
formulas include
shell effects, etc.
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Overview NM Operators

Semi-empirical mass formula per nucleon
EB(N,Z )

A
= av − asA−1/3 − aC

Z 2

A4/3 − asym
(N − Z )2

A2

Divide terms by A = N + Z

Rough numbers:
av ≈ 16 MeV, as ≈ 18 MeV,
aC ≈ 0.7 MeV, asym ≈ 28 MeV

Surface symmetry energy:
asurf sym(N − Z )2/A7/3

Now take A→∞ with
Coulomb→ 0 and fixed
N/A, Z/A

Surface terms negligible
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Overview NM Operators

Nuclear and neutron matter energy vs. density

[Akmal et al. calculations shown]
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Uniform with Coulomb turned off

Density n (or often ρ)

Fermi momentum n = (ν/6π2)k3
F

Neutron matter (Z = 0) has
positive pressure

Symmetric nuclear matter
(N = Z = A/2) saturates

Empirical saturation at about
E/A ≈ −16 MeV and
n ≈ 0.17± 0.03 fm−3
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Overview NM Operators Munich

Outline

Overview of nuclei leading to nuclear matter

Nuclear matter calculations

Operators and resolution
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Overview NM Operators Munich

Recent activity on nuclear matter (from INSPIRE) . . .
A. Carbone, A. Rios and A. Polls, “Symmetric nuclear matter with chiral
three-nucleon forces in the self-consistent Green’s functions approach,”
arXiv:1307.1889 [nucl-th].
T. Katayama and K. Saito, “Properties of dense, asymmetric nuclear matter
in Dirac-Brueckner-Hartree-Fock approach,” arXiv:1307.2067 [nucl-th].
T. Inoue et al. [HAL QCD Collaboration], “Equation of State for Nucleonic
Matter and its Quark Mass Dependence from the Nuclear Force in Lattice
QCD,” arXiv:1307.0299 [hep-lat].
G. Baardsen, A. Ekstrm, G. Hagen and M. Hjorth-Jensen, “Coupled
Cluster studies of infinite nuclear matter,” arXiv:1306.5681 [nucl-th].
G. Colucci, A. Sedrakian and D. H. Rischke, “Impact of relativistic chiral
one-pion exchange on nuclear matter properties,” arXiv:1303.1270
[nucl-th].
J. A. Oller, “Chiral effective field theory for nuclear matter,” PoS QNP 2012,
134 (2012).
N. Kaiser, “Chiral four-body interactions in nuclear matter,” Eur. Phys. J. A
48, 135 (2012) [arXiv:1209.4556 [nucl-th]].
M. Baldo and H. R. Moshfegh, “Correlations in nuclear matter,” Phys. Rev.
C 86, 024306 (2012) [arXiv:1209.2270 [nucl-th]].
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Overview NM Operators Munich

Chiral Dynamics of Nuclear Matter
Munich Group (Kaiser, Fritsch, Holt, Weise, . . . )

Basic idea: ChPT loop expansion becomes EOS expansion:

E(kF) =
∞∑

n=2

kn
F fn(kF/mπ,∆/mπ) [∆ = M∆ −MN ≈ 300 MeV]

1st pass: N’s and π’s =⇒ count kF’s by medium insertions

Saturation from Pauli-blocking of iterated 1π-exchange
Problems with single-particle and isospin properties and . . .

2nd pass: include πN∆ dynamics:
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Overview NM Operators Munich

Chiral Dynamics of Nuclear Matter (cont.)
Munich Group (Kaiser, Fritsch, Holt, Weise, . . . )

3-Loop: Fit nuclear matter saturation, predict neutron matter

Substantial improvement in s.p. properties, spin-stability, . . .
Issues for perturbative chiral expansion of nuclear matter:

higher orders, convergence? power counting?
relation of LEC’s to free space EFT?
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Overview NM Operators Munich

Nuclear matter with NN ladders only [nucl-th/0504043]

Brueckner ladders
order-by-order

Repulsive core =⇒
series diverges

Usual solution: resum
into G-matrix then do
hole-line expansion

Vlow k converges, so
can choose U for DFT

No saturation in sight!

But now add 3-body!
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Overview NM Operators Munich

Diagrams for MBPT to second order

VNN V3N

VNN

VNN

V3N

VNN

V3N

V3N

V3N

V3N

Diagrams contributing to the energy per particle up to second
order in MBPT, taking two- and three-body interactions into
account.
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Overview NM Operators Munich

Energy per particle in SNM vs. Fermi momentum

Compare NN-only results
to NN+3NF

Two representative NN
cutoffs

Fixed 3N cutoff

3N constants fit to
few-body nuclei
=⇒ prediction!

Hebeler et al. (2011)
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Overview NM Operators Munich

There’s nothing new under the sun . . .

Is the idea that repulsive three-nucleon forces could be the
dominant nm saturation mechanism a new one?

Consider this quote:
“. . . if we accept the potentials . . . as a semiphenomenological
working basis for our calculations, we find that the many-body
forces, and in particular the three-body repulsion, provide a
satisfactory qualitative understanding of nuclear saturation.”

Where does it come from?

Drell and Huang, 1953!

Disclaimer: Pion forces, but not chiral symmetry! . . .
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Overview NM Operators Munich

Low resolution calculations of nuclear matter
Evolve NN by RG to low momentum, fit NNN to A = 3,4
Predict nuclear matter in MBPT [Hebeler et al. (2011)]
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Cutoff dependence at 2nd order significantly reduced
3rd order contributions are small
Remaining cutoff dependence: many-body corrections, 4NF?
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Overview NM Operators Munich

Hierarchy of many-body contributions to SNM and PNM
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ENN denotes the energy contributions from NN interactions

E3N all contributions which include at least one 3N interaction

Discussion questions in the exercises!
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Overview NM Operators A = 2 Resolution ANC

Outline

Overview of nuclei leading to nuclear matter

Nuclear matter calculations

Operators and resolution
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Overview NM Operators A = 2 Resolution ANC

Unevolved long-distance operators change slowly with λ

Matrix elements dominated by long
range run slowly for λ > 2 fm−1

Here: examples from the deuteron
(compressed scales)

Which is the correct answer?

Are we using the complete
operator for the experimental
quadrupole moment?
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Overview NM Operators A = 2 Resolution ANC

Deuteron electromagnetic form factors
GC , GQ , GM in deuteron with
chiral EFT at leading order
(Valderrama et al.)

NNLO 550/600 MeV potential

Unchanged at low q with
unevolved operators

Independent of λ with evolved
operators
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Overview NM Operators A = 2 Resolution ANC

Operator flow in practice [e.g., see arXiv:1008.1569]

Evolution with s of any
operator O is given by:

Os = UsOU†s

so Os evolves via

dOs

ds
= [[Gs,Hs],Os]

Us =
∑

i |ψi (s)〉〈ψi (0)|
or solve dUs/ds flow

Matrix elements of evolved
operators are unchanged

Consider momentum
distribution < ψd |a†qaq |ψd >

at q = 0.34 and 3.0 fm−1

in deuteron
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Overview NM Operators A = 2 Resolution ANC

High and low momentum operators in deuteron
Integrand of (Ua†qaqU†) for q = 0.34 fm−1

Integrand for q = 3.02 fm−1

Momentum
distribution
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One-body operator does not evolve (for “standard” SRG)

Induced two-body operator ≈ regularized delta function:
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Overview NM Operators A = 2 Resolution ANC

High and low momentum operators in deuteron
Integrand of 〈ψd | (Ua†qaqU†) |ψd〉 for q = 0.34 fm−1

Integrand for q = 3.02 fm−1

Momentum
distribution
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Decoupling =⇒ High momentum components suppressed

Integrated value does not change, but nature of operator does

Similar for other operators:
〈
r2
〉
, 〈Qd 〉, 〈1/r〉

〈 1
r

〉
, 〈GC〉, . . .
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Overview NM Operators A = 2 Resolution ANC

Is the tail of n(k) for nuclei measurable? (cf. SRC’s)
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E.g., extract from
electron scattering?

Scale- and scheme-
dependent
high-momentum tail!

n(k) from VSRG has
no high-momentum
components!

No region where
1/as � k � 1/R
(cf. large k limit for
unitary gas)
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‘Non-observables’ vs. Scheme-dependent observables

Some quantities are in principle not observable
T.D. Lee: “The root of all symmetry principles lies in the
assumption that it is impossible to observe certain basic
quantities; these will be called ‘non-observables’.”
E.g., you can’t measure absolute position or time or a gauge

Directly measurable quantities are “clean” observables

E.g., cross sections and energies
Note: Association with a Hermitian operator is not enough!

Scale- and scheme-dependent derived quantities
Critical questions to address for each quantity:

What is the ambiguity or convention dependence?
Can one convert between different prescriptions?
Is there a consistent extraction from experiment such that
they can be compared with other processes and theory?

Physical quantities can be in-practice clean observables if
scheme dependence is negligible (e.g., (e,2e) from atoms)
How do we deal with dependence on the Hamiltonian?
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Partial list of ‘non-observables’ references

Equivalent Hamiltonians in scattering theory, H. Ekstein, (1960)

Measurability of the deuteron D state probability, J.L. Friar, (1979)

Problems in determining nuclear bound state wave functions,
R.D. Amado, (1979)

Nucleon nucleon bremsstrahlung: An example of the impossibility of
measuring off-shell amplitudes, H.W. Fearing, (1998)

Are occupation numbers observable?, rjf and H.-W. Hammer, (2002)

Unitary correlation in nuclear reaction theory: Separation of nuclear
reactions and spectroscopic factors, A.M. Mukhamedzhanov and
A.S. Kadyrov, (2010)

Non-observability of spectroscopic factors, B.K. Jennings, (2011)

How should one formulate, extract, and interpret ‘non-observables’
for nuclei?, rjf and A. Schwenk, (2010) [in J. Phys. G focus issue on
Open Problems in Nuclear Structure Theory, edited by J. Dobaczewski]



Measuring the QCD Hamiltonian: Running αs(Q2)

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z
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Heavy Quarkonia
e+e–  Annihilation

Deep Inelastic Scattering

July 2009

The QCD coupling is scale
dependent (“running”):
αs(Q2) ≈ [β0 ln(Q2/Λ2

QCD)]−1

The QCD coupling strength αs is
scheme dependent (e.g., “V”
scheme used on lattice, or MS)

Extractions from experiment can
be compared (here at MZ ):

0.11 0.12 0.13

α  (Μ  )s Z

Quarkonia (lattice)

DIS  F2 (N3LO) 

τ-decays (N3LO)

DIS  jets (NLO)

e+e– jets & shps (NNLO) 

electroweak fits (N3LO) 

e+e– jets & shapes (NNLO) 

Υ decays (NLO)

cf. QED, where αem(Q2) is
effectively constant for soft Q2:

αem(Q2 = 0) ≈ 1/137
∴ fixed H for quantum chemistry



Running QCD αs(Q2) vs. running nuclear Vλ

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z
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αs (Q)
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Q [GeV]

Heavy Quarkonia
e+e–  Annihilation

Deep Inelastic Scattering

July 2009

The QCD coupling is scale
dependent (cf. low-E QED):
αs(Q2) ≈ [β0 ln(Q2/Λ2

QCD)]−1

The QCD coupling strength αs
is scheme dependent (e.g., “V”
scheme used on lattice, or MS)

Vary scale (“resolution”) with RG

Scale dependence: SRG (or Vlow k )
running of initial potential with λ
(decoupling or separation scale)

Scheme dependence: AV18 vs. N3LO
(plus associated 3NFs)

But all are (NN) phase equivalent!

Shift contributions between interaction
and sums over intermediate states
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Project non-local NN potential to
visualize: Vλ(r) =

∫
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Parton vs. nuclear momentum distributions

The quark distribution q(x ,Q2) is
scale and scheme dependent

x q(x ,Q2) measures the share of
momentum carried by the quarks
in a particular x-interval

q(x ,Q2) and q(x ,Q2
0) are related

by RG evolution equations
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Deuteron momentum distribution
is scale and scheme dependent

Initial AV18 potential evolved with
SRG from λ =∞ to λ = 1.5 fm−1

High momentum tail shrinks as
λ decreases (lower resolution)
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q(x ,Q2) and q(x ,Q2
0) are related

by RG evolution equations
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Form factor F2 is independent
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Q2 running of fa(x ,Q2) comes
from choosing µf to optimize
extraction from experiment

Also has factorization assumptions
(e.g., from D. Bazin ECT* talk, 5/2011)

D. Bazin, Workshop on Recent Developments in Transfer and Knockout Reactions, May 9-13, 2011, Trento, Italy

Conundrum

• Using reactions to study nuclear structure

• One observable, two models

• To extract structure information, need accurate 
reaction model

σ
if

=

∑

|Jf−Ji|≤j≤Jf +Ji

S
if
j σsp

Observable: 
cross section

Structure model: 
spectroscopic factor

Reaction model: 
single-particle
cross section

Is the factorization general/robust?
(Process dependence?)

What does it mean to be consistent
between structure and reaction
models? Treat separately? (No!)

How does scale/scheme
dependence come in?

What are the trade-offs? (Does
simpler structure always mean
much more complicated reaction?)
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Scale/scheme dependence: spectroscopic factors

Green’s functions I 19

RemovalRemoval
probability forprobability for
valence protonsvalence protons

fromfrom
NIKHEF dataNIKHEF data

Note:
We have seen mostly
data for removal of

valence protons

Spectroscopic factors for valence
protons have been extracted from
(e,e′p) experimental cross
sections (e.g., NIKHEF 1990’s at left)

Used as canonical evidence for
“correlations”, particularly
short-range correlations (SRC’s)

But if SFs are scale/scheme
dependent, how do we explain
the cross section?

12C(e, e′p)X

1966 1988 2006



Standard story for (e,e′p) [from C. Ciofi degli Atti]

In IA: “missing” momentum pm = k1 and energy Em = E

Choose Em to select a discrete final state for range of pm

FSI treated as managable add-on theoretical correction to IA



(Assumed) factorization of (e,e′p) cross section
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TABLE II. Kinematics of the ' O(e, e'p) "N experiment. T, is the total center-of-mass kinetic en-
ergy between the recoi1ing "N nucleus and the knocked out proton, aud Q is the total charge accumu-
lated at each kinematics.

Pm
(MeV/e)
—150.5—100.1—81.5—40.8

1.8
39.4
79.4
118.9
159.4
191.6
216.5
250.5

Eo
(MeV)

520.6
520.6
455.8
455.8
520.6
455.8
455.8
455.8
455.8
455.8
304.4
304.4

0,
(deg)

78.3
78.0
81.2
72.8
58.5
57.1
49.7
42.5
35.3
29.3
40.6
30.2

Pe'
(MeV/c)

405.6
3&8.8
335.4
336.9
397.0
339.7
340.8
341.7
342.5
342.4
188.9
196.1

Op

(deg)

42.2
40.8
39.5
42.2
47.4
46.5
48.0
48.7
48.5
47.1
38.2
36.0

Pp
(MeV/c)

441.1
481.6
441.7
438.9
460.2
433.0
430.0
427. 1
424. 1
421.7
419.1
417.6

Tc.m.
(MeV)

87.7
105.5
89.9
90.0
99.7
90.0
90.0
90.0
90.0
90.0
89.6
90.0

(mC)

250.0
310.0
65.7
209.7
65.1
150.0
118.2
110.0
61.0
43.2
130.0
36.5

tions which reflected the complete (E,p ) dependence
of the accidental coincidence spectrum on the spectrome-
ter geometry. For the present analysis, adjustments in
the position of the electron spectrometer aperture of up
to 5 rnrad in the horizontal direction and 4 mrad in the
vertical direction were required. Adjustments of these
magnitudes are within the alignment tolerances of the
spectrometer, beam, and target system. For the proton
spectrometer, the data were found to be insensitive to
small changes in the aperture osition.
The coincidence reaction ' O(e, e'p)' N was measured

in quasielastic parallel kinematics at three different beam
energies: ED=304, 456, and 521 MeV. The total kinetic
energy in the center-of-mass system between the outgoing
proton and the recoiling ' N nucleus was kept constant at
90 MeV. Table II lists the relevant kinematical pararne-
ters of the experiment.
For the present experiment, we have measured the ' 0

spectral function in the range 0&E &40 MeV and—180& p & 270 MeV jc. The sign of the missing
momentum refers to the projection of the initial nucleon
momentum along the direction of the momentum
transfer. The missing rnomenturn is positive for
~q~ & ~p'~. In Fig. 1 a missing energy spectrum of the re-
action ' O(e, e'p)' N is shown for the kinematics cen-
tered about p =120 MeV/c. The spectrum is dominat-
ed by two peaks at E =12.1 and 18.4 MeV, correspond-
ing to proton knockout from the valence 1p orbitals in
' O. The missing energy resolution obtained for the ex-
periment varied between 150 and 200 keV for the
difFerent kinematics. Because of this excellent resolution,
the excitation of the ' N positive parity doublet at
E„=5.3 MeV (E =17.4 MeV) is also clearly evident.
The momentum distribution can be calculated for each
discrete state in the spectral function by integrating over
the missing energy interval of interest [see expression (4)].

IV. DWIA ANALYSIS

Distortions of the knocked out proton wave function
required for the DWIA analysis were calculated using

2OO 1

16p{e e p)1SN

80 & p ( 160 MeV/c l

3/8

15O—
&D

100
E

5o I-

t

5/2'
1/2+

14 16 18 20
E [Mev]

3/2

22 24 26

FIG. 1. ' O(e, e'p) "N missing energy spectrum for the kine-
matics centered about p = 120MeV/e.

6ve different optical potentials. Three of the optical po-
tentials were phenomenological Woods-Saxon parametri-
zations. Of these, two were derived directly from elastic
' O(p,p') data [17] taken at an incident laboratory energy
of 100 MeV. The elastic cross section and analyzing
power were fit [18] with a Woods-Saxon (WS) potential
containing real, imaginary, and spin-orbit terms. A
second potential (WSdd), which included two additional
derivative terms in the central potential, was also used to
flt the (p,p') data. The center-of-mass kinetic energy of
90 MeV for the current (e, e'p) experiment corresponds

Missing energy spectrum for
16O(e,e′p)15N [Leuschner (1994)]

M. LEUSCHNER et al.

The final fitted DWIA results for the two strong 1p
transitions are shown in Fig. 3. The extracted spectro-
scopic factors and rms radii for each state and each po-
tential are listed in Table IV. All five potentials yield ex-
cellent fits for both states. The quality of the fit, as evi-
denced by the g values listed in Table IV, does not suffer
with the inclusion of the data at p &0. Furthermore,
the extracted values of r, and S do not depend on
whether or not the p &0 data are included in the fit.
The spectroscopic factors obtained from the current

experiment are in general agreement with those of the
previous ' O(e, e'p) experiment of Bernheim et al. [4], al-
though their analysis employed different bound state
wave functions and different optical potentials, and their
data were taken in a difFerent kinematical arrangement
(nonparallel). They reported spectroscopic factors of
1.18(15) and 2.28(29) for the lp&zz ground state and i@3&2
third excited state, respectively.
As Table VI indicates, the consistency among the fitted

parameters between the five potentials is excellent for the
ground state transition, while the spectroscopic fac-

tors for the —,
' state at E„=6.3 MeV differ by almost

20% between the extreme values. The spectroscopic fac-
tors from the WS and WSdz potentials, which were both
derived from elastic (p,p') data, agree to within a few
percent. The results from the two Kelly potentials,
which were derived explicitly from inelastic (p,p') data,
are also close to one another. The magnitude of the spec-
troscopic factor due to the Schwandt parametrization
falls between the first two groups. The major discrepancy
concerns results which were derived using optical poten-
tials which describe elastic (p,p') data and optical poten-
tials which describe inelastic (p,p') data. Since all five
potentials give a good (y /ND„&1) description of the
elastic (p,p') data and the (e, e'p) momentum distribu-
tions, we conclude that the optical potential is not
suSciently constrained by the elastic (p,p') scattering
data alone.
The weak transitions to the positive parity states at
E„=5.3 MeV in ' N are of particular interest for deter-
mining the structure of ' O. The momentum distribution

100
Wsdd
Ke190n
SC

P3/aE„= 6.3 MeV

0. 1

Pi
E„

—200 —100
I

0 100
P [Mev,/c]

200

FIG. 3. Momentum distribution for 1p&/2 ground state (bot-
tom) and the 1p3/2 state at E„=6.3 MeV. The curves represent
DWIA calculations using three difFerent optical potentials.

for this doublet is shown in Fig. 4. The DWIA analysis
of these states is complicated somewhat because they are
not resolved in missing energy, since the 30 keV separa-
tion energy between the two states is considerably less
than the experimental resolution of 150—200 keV. Be-
cause the two states differ in their angular momentum, a
separation in missing momentum can be performed.
In order to extract the rms radii and spectroscopic fac-

tors, the measured momentum distribution was fit with
an incoherent sum of 2s&&2 and 1d5/2 momentum distri-
butions. The radii and spectroscopic factors of each state
were allowed to vary independently. The extracted spec-

TABLE IV. Spectroscopic results for ' 0 proton knockout leading to the lp&/2 "N ground state and
the 1p3/2 state at E„=6.3 MeV. The errors represent the statistical uncertainties only. The overall sys-
tematic uncertainty for the present data is 5.4%.

State
(J77)

E„
(MeV) Potential

Radius
(fm)

p )0
S X'~&DF

Radius
(fm)

All p

S X'~&DF
l—
2 0.00 WS

WSdd
Sc

Ke196n
Ke1100o

2.918(32)
2.928( 33 )
2.828( 31)
2.958(31)
2.991(31)

1.261( 13)
1.230( 16)
1.222( 11)
1.249( 18)
1.221( 13)

0.64
0.70
0.60
0.63
0.67

2.898(31)
2.906(36)
2.835(30)
2.943(30)
2.970(29)

1.275( 18)
1.242( 17)
1.220( 11)
1.260( 13)
1.234( 16)

0.72
0.77
0.57
0.67
0.85

3
2 6.32 WS

WSdd
Sc

Ke196n
Ke1100o

2.775(21 )
2.778(47)
2.677(21 )
2.727(25 )
2.793(23)

2.047( 14)
1.980(15)
2.132( 14)
2.339(18)
2.232(15)

1.16
1.27
0.66
0.70
0.77

2.771(20)
2.784(22)
2.680( 19)
2.719(24)
2.805( 15)

2.059( 16)
1.983(16)
2.132( 12)
2.348( 19)
2.215( 12)

0.98
1.07
0.69
0.72
0.92

dσ
dp′edp′N

= Kσep × ρ(pm) ∝ |φα(pm)|2

=⇒ p1/2 spectroscopic factor ≈ 0.63
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The final fitted DWIA results for the two strong 1p
transitions are shown in Fig. 3. The extracted spectro-
scopic factors and rms radii for each state and each po-
tential are listed in Table IV. All five potentials yield ex-
cellent fits for both states. The quality of the fit, as evi-
denced by the g values listed in Table IV, does not suffer
with the inclusion of the data at p &0. Furthermore,
the extracted values of r, and S do not depend on
whether or not the p &0 data are included in the fit.
The spectroscopic factors obtained from the current

experiment are in general agreement with those of the
previous ' O(e, e'p) experiment of Bernheim et al. [4], al-
though their analysis employed different bound state
wave functions and different optical potentials, and their
data were taken in a difFerent kinematical arrangement
(nonparallel). They reported spectroscopic factors of
1.18(15) and 2.28(29) for the lp&zz ground state and i@3&2
third excited state, respectively.
As Table VI indicates, the consistency among the fitted

parameters between the five potentials is excellent for the
ground state transition, while the spectroscopic fac-

tors for the —,
' state at E„=6.3 MeV differ by almost

20% between the extreme values. The spectroscopic fac-
tors from the WS and WSdz potentials, which were both
derived from elastic (p,p') data, agree to within a few
percent. The results from the two Kelly potentials,
which were derived explicitly from inelastic (p,p') data,
are also close to one another. The magnitude of the spec-
troscopic factor due to the Schwandt parametrization
falls between the first two groups. The major discrepancy
concerns results which were derived using optical poten-
tials which describe elastic (p,p') data and optical poten-
tials which describe inelastic (p,p') data. Since all five
potentials give a good (y /ND„&1) description of the
elastic (p,p') data and the (e, e'p) momentum distribu-
tions, we conclude that the optical potential is not
suSciently constrained by the elastic (p,p') scattering
data alone.
The weak transitions to the positive parity states at
E„=5.3 MeV in ' N are of particular interest for deter-
mining the structure of ' O. The momentum distribution
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FIG. 3. Momentum distribution for 1p&/2 ground state (bot-
tom) and the 1p3/2 state at E„=6.3 MeV. The curves represent
DWIA calculations using three difFerent optical potentials.

for this doublet is shown in Fig. 4. The DWIA analysis
of these states is complicated somewhat because they are
not resolved in missing energy, since the 30 keV separa-
tion energy between the two states is considerably less
than the experimental resolution of 150—200 keV. Be-
cause the two states differ in their angular momentum, a
separation in missing momentum can be performed.
In order to extract the rms radii and spectroscopic fac-

tors, the measured momentum distribution was fit with
an incoherent sum of 2s&&2 and 1d5/2 momentum distri-
butions. The radii and spectroscopic factors of each state
were allowed to vary independently. The extracted spec-

TABLE IV. Spectroscopic results for ' 0 proton knockout leading to the lp&/2 "N ground state and
the 1p3/2 state at E„=6.3 MeV. The errors represent the statistical uncertainties only. The overall sys-
tematic uncertainty for the present data is 5.4%.
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Source of scale-dependence for low-E structure
Measured cross section as convolution: reaction⊗structure

but separate parts are not unique, only the combination

Short-range unitary transformation U leaves m.e.’s invariant:

Omn ≡ 〈Ψm|Ô|Ψn〉 =
(
〈Ψm|U†

)
UÔU†

(
U|Ψn〉

)
= 〈Ψ̃m|Õ|Ψ̃n〉 ≡ Õm̃ñ

Note: matrix elements of operator Ô itself between the transformed
states are in general modified:

Om̃ñ ≡ 〈Ψ̃m|O|Ψ̃n〉 6= Omn =⇒ e.g., 〈ΨA−1
n |aα|ΨA

0 〉 changes

In a low-energy effective theory, transformations that modify
short-range unresolved physics =⇒ equally valid states.
So Õmn 6= Omn =⇒ scale/scheme dependent observables.

[Field theory version: the equivalence principle says that only on-shell
quantities can be measured. Field redefinitions change off-shell
dependence only. E.g., see rjf, Hammer, PLB 531, 203 (2002).]

RG unitary transformations change the decoupling scale =⇒
change the factorization scale. Use to characterize and explore
scale and scheme and process dependence!
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= 〈Ψ̃m|Õ|Ψ̃n〉 ≡ Õm̃ñ
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RG unitary transformations change the decoupling scale =⇒
change the factorization scale. Use to characterize and explore
scale and scheme and process dependence!



All pieces mix with unitary transformation

A one-body current becomes many-body (cf. EFT current):

Ûρ̂(q)Û† = + α + · · ·

New wf correlations have appeared (or disappeared):

Û|ΨA
0 〉 = Û

12C(e, e′p)X

1966 1988 2006

+ · · · =⇒ Z

12C(e, e′p)X

1966 1988 2006

+ α′

12C(e, e′p)X

1966 1988 2006

+ · · ·

Similarly with |Ψf 〉 = a†p|ΨA−1
n 〉

Thus spectroscopic factors are scale dependent

Final state interactions (FSI) are also modified by Û

Bottom line: the cross section is unchanged only if all pieces are
included, with the same U: H(λ), current operator, FSI, . . .



Deuteron scale-(in)dependent observables
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Vlow k RG transformations labeled by Λ (different VΛ’s)
=⇒ soften interactions by lowering resolution (scale)
=⇒ reduced short-range and tensor correlations

Energy and asymptotic D-S ratio are unchanged (cf. ANC’s)

But D-state probability changes (cf. spectroscopic factors)

Plan: Make analogous calculations for A > 2 quantities (like SFs)
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Why are ANC’s different? Coordinate space
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ANC’s, like phase shifts, are asymptotic properties
=⇒ short-range unitary transformations do not alter them
[e.g., see Mukhamedzhanov/Kadyrov, PRC 82 (2010)]

In contrast, SF’s rely on interior wave function overlap
(Note difference in S-wave and D-wave ambiguities)

Dick Furnstahl TALENT: Nuclear forces



Overview NM Operators A = 2 Resolution ANC

Why are ANC’s different? Momentum space
[based on R.D. Amado, PRC 19 (1979)]

1 k2

2µ 〈k|ψn〉+〈k|V |ψn〉 = − γ
2
n

2µ 〈k|ψn〉

=⇒ 〈k|ψn〉 = −2µ〈k|V |ψn〉
k2 + γ2

n

2 〈r|ψn〉 =
∫ d3k

(2π)3 eik·r〈k|ψn〉
|r|→∞−→ Ane−γnr/r

3 integral dominated by pole from 1.

4 extrapolate 〈k|V |ψn〉 to k2 = −γ2
n
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Or, residue from extrapolating on-shell T-matrix to deuteron pole
=⇒ invariant under unitary transformations

Next vertex singularity at −(γ + mπ)2 =⇒ same for FSI

Dick Furnstahl TALENT: Nuclear forces



Overview NM Operators A = 2 Resolution ANC

Final comments and questions
Summary (and follow-up) points

While scale and scheme-dependent observables can be
(to good approximation) unambiguous for some systems,
they are often (generally?) not for nuclei!
Scale/scheme includes consistent Hamiltonian and operators.
How dangerous is it to treat experimental analysis in pieces?
Unitary transformations reveal natural scheme dependence
Parton distribution functions as a paradigm

=⇒ Can we have controlled factorization at low energies?
Questions for which RG/EFT perspective + tools can help

How should one choose a scale/scheme?
Can we (should we) use a reference Hamiltonian?
What is the scheme-dependence of SF’s and other quantities?
What is the role of short-range/long-range correlations?
How do we match Hamiltonians and operators?
When is the assumption of one-body operators viable?
. . . and many more!

Dick Furnstahl TALENT: Nuclear forces



How should one choose a scale/scheme?

To make calculations easier or more convergent
QCD running coupling and scale: improved perturbation theory;
choosing a gauge: e.g., Coulomb or Lorentz
Low-k potential: improve CI or MBPT convergence,

or to make microscopic connection to shell model or . . .
(Near-) local potential: quantum Monte Carlo methods work

Better interpretation or intuition =⇒ predictability
SRC phenomenology?

Cleanest extraction from experiment
Can one “optimize” validity of impulse approximation?
Ideally extract at one scale, evolve to others using RG

Plan: use range of scales to test calculations and physics
Use renormalization group to consistently relate scales and
quantitatively probe ambiguities (e.g., in spectroscopic factors)
Match Hamiltonians and operators (EFT) and then use RG



Overview NM Operators A = 2 Resolution ANC

What parts of wf’s can be extracted from experiment?

Measurable: asymptotic (IR) properties like phase shifts, ANC’s

Not observables, but well-defined theoretically given a Hamiltonian:
interior quantities like spectroscopic factors

These depend on the scale and the scheme
Extraction from experiment requires robust factorization of
structure and reaction; only the combination is scale/scheme
independent (e.g., cross sections) [What if weakly dependent?]

What about the high-momentum tails of momentum distributions?

Consider cold atoms in the unitary regime
Compare to nuclear case

Short-range correlations (SRCs) depend on the Hamiltonian and
the resolution scale (cf. parton distribution functions)

So might expect Hamiltonian- and resolution-dependent but
A-independent high-momentum tails of wave functions

Universal extrapolation for different A, but λSRG dependent

Dick Furnstahl TALENT: Nuclear forces



When are wave functions measurable? [W. Dickhoff]

Green’s functions I 16

 

!
1s(p) = 2

3/ 2"
1

(1+ p
2
)
2

Hydrogen 1s wave function
“seen” experimentally
Phys. Lett. 86A, 139 (1981)

And so on for other atoms …

Helium
in Phys. Rev. A8, 2494 (1973)

Atoms studied with the (e,2e) reaction

But compare approximations for (e,2e) on atoms to those for
(e,e′p) on nuclei! (Impulse approx., FSI, vertex, . . . )



Spectroscopic factors in atoms
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$For a bound final N-1 state the spectroscopic factor is given by 

For H and He the 1s electron spectroscopic factor is 1

For Ne the valence 2p electron has S=0.92 with two additional fragments, 

each carrying 0.04, at higher energy.

Argon

3p and 3s

strength

Closed-shell

atoms

n(!) = 0 or 1 

One-body scattering, small scheme dependence =⇒ robust SF



When can you measure a potential?
Think about quantum mechanical convolution for energy

E =

∫
dx Ψ∗(x)(T + V )Ψ(x)

(Schematic: e.g., here x = {x1,x2})
When can we isolate H = T + V from |Ψ(x)|2?

Need very heavy particles or long-distances so that wave
functions can be approximated as delta functions
Examples

classical limit (e.g., gravitational potential)
heavy quark potential on a lattice
Coulomb potential in atoms/molecules

In nuclear case, can change both Ψ(x) and V (x) at short
distance and leave E unchanged =⇒ not measurable

In field theory formulation, freedom to shift between
interaction vertex and propagator for exchanged particle



Impulse approximation

The discussion always starts with: “If we assume . . . ”
Usually that the impulse approximation is good (one-body
current and one active nucleon), and increasingly good with
larger momentum transfer
Final state interactions neglected (and then assumed to be
accounted for in a model-independent way)

This brings to mind some quotes:
“If my grandmother had wheels, she’d be a bicycle.”
“Hope is not a plan!” (or a reliable guide to experiment)

How well the impulse approximation works depends on the
system and probe (process dependent)

Works well: electron scattering from atoms, neutron scattering
from liquid helium (??? maybe not in detail)
Large corrections: nuclear reactions!

Should we choose a scheme in which the impulse
approximation is best satisfied?
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