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Outline

Teaser: Skyrme vs. pionless, perturbative functional

Bethe-Brueckner-Goldstone Power Counting

Preview for MBPT applied in finite nuclei

Operators and resolution
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DFT BBG Preview Operators

“The limits of the nuclear landscape”
J. Erler et al., Nature 486, 509 (2012)

application of modern optimization and statistical methods, together
with high-performance computing, has revolutionized nuclear DFT
during recent years.
In our study, we use quasi-local Skyrme functionals15 in the

particle–hole channel augmented by the density-dependent, zero-
range pairing term. The commonly used Skyrme EDFs reproduce total
binding energies with a root mean square error of the order of
1–4MeV (refs 15, 16), and the agreement with the data can be signifi-
cantly improved by adding phenomenological correction terms17. The
Skyrme DFT approach has been successfully tested over the entire
chart of nuclides on a broad range of phenomena, and it usually per-
forms quite well when applied to energy differences (such as S2n), radii
and nuclear deformations. Other well-calibrated mass models include

the microscopic–macroscopic finite-range droplet model (FRDM)18,
the Brussels–Montreal Skyrme–HFB models based on the Hartree–
Fock–Bogoliubov (HFB) method17 and Gogny force models19,20.
Figure 2 illustrates the difficulties with theoretical extrapolations

towards drip lines. Shown are the S2n values for the isotopic chain of
even–even erbium isotopes predicted with different EDF, SLy421, SV-
min13, UNEDF015, UNEDF122, and with the FRDM18 and HFB-2117

models. In the region for which experimental data are available, all
models agree and well reproduce the data. However, the discrepancy
between various predictions steadily grows when moving away from
the region of known nuclei, because the dependence of the effective
force on the neutron-to-proton asymmetry (neutron excess) is poorly
determined. In the example considered, the neutron drip line is
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Figure 2 | Calculated and experimental two-neutron separation energies of
even–even erbium isotopes. Calculations performed in this work using SLy4,
SV-min, UNEDF0 andUNEDF1 functionals are compared to experiment2 and
FRDM18 andHFB-2117 models. The differences betweenmodel predictions are
small in the region where data exist (bracketed by vertical arrows) and grow

steadily when extrapolating towards the two-neutron drip line (S2n5 0). The
bars on the SV-min results indicate statistical errors due to uncertainty in the
coupling constants of the functional. Detailed predictions around S2n5 0 are
illustrated in the right inset. The left inset depicts the calculated and
experimental two-proton separation energies at N5 76.
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Figure 1 | Nuclear even–even landscape as of 2012. Mapof bound even–even
nuclei as a function of Z and N. There are 767 even–even isotopes known
experimentally,2,3 both stable (black squares) and radioactive (green squares).
Mean drip lines and their uncertainties (red) were obtained by averaging the
results of different models. The two-neutron drip line of SV-min (blue) is

shown together with the statistical uncertainties at Z5 12, 68 and 120 (blue
error bars). The S2n5 2MeV line is also shown (brown) together with its
systematic uncertainty (orange). The inset shows the irregular behaviour of the
two-neutron drip line around Z5 100.

RESEARCH LETTER

5 1 0 | N A T U R E | V O L 4 8 6 | 2 8 J U N E 2 0 1 2

Macmillan Publishers Limited. All rights reserved©2012

Proton and neutron driplines predicted by Skyrme EDFs

Total: 6900± 500 nuclei with Z ≤ 120 (≈ 3000 known)
Estimate systematic errors by comparing models
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Teaser: Comparing Skyrme and natural, pionless Functionals

Textbook Skyrme EDF (for N = Z ) [ρ = 〈ψ†ψ〉, τ = 〈∇ψ† ·∇ψ〉]

E [ρ, τ, J] =
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Natural, pionless ρτJ energy density functional for ν = 4
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Same functional as dilute Fermi gas with ti ↔ Ci?

Is Skyrme missing non-analytic, NNN, long-range (pion),
(and so on) terms? (But NDA works: Ci ’s are natural!)

Isn’t this a “perturbative” expansion?
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Outline

Teaser: Skyrme vs. pionless, perturbative functional

Bethe-Brueckner-Goldstone Power Counting

Preview for MBPT applied in finite nuclei

Operators and resolution
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DFT BBG Preview Operators

Bethe-Brueckner-Goldstone Power Counting
Strong short-range repulsion
=⇒ Sum V ladders =⇒ G

vs.

Vlow k momentum
dependence + phase space
=⇒ perturbative

Λ: |P/2 ± k| > kF and |k| < Λ

F: |P/2 ± k| < kF
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Compare Potential and G Matrix: AV18
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Compare Potential and G Matrix: AV18
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Compare Potential and G Matrix: N3LO (500 MeV)
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DFT BBG Preview Operators

Compare Potential and G Matrix: N3LO (500 MeV)
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DFT BBG Preview Operators

Hole-Line Expansion Revisited (Bethe, Day, . . . )

Consider ratio of fourth-order diagrams to third-order:
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“Conventional” G matrix still couples low-k and high-k
no new hole line =⇒ ratio ≈ −χ(r = 0) ≈ −1 =⇒ sum all orders
add a hole line =⇒ ratio ≈∑n≤kF

〈bn|(1/e)G|bn〉 ≈ κ ≈ 0.15

Low-momentum potentials decouple low-k and high-k

add a hole line =⇒ still suppressed
no new hole line =⇒ also suppressed (limited phase space)
freedom to choose single-particle U =⇒ use for Kohn-Sham

=⇒ Density functional theory (DFT) should work!
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Two-Body Correlations at Nuclear Matter Density

Defect wf χ(r) for particular
kinematics (k = 0, Pcm = 0)

AV18: “Wound integral”
provides expansion parameter

Extreme case here, but same
pattern in general

Tensor (3S1) =⇒ larger defect

Still a sizable wound for N3LO
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Two-Body Correlations at Nuclear Matter Density
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Two-Body Correlations at Nuclear Matter Density
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Two-Body Correlations at Nuclear Matter Density
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Two-Body Correlations at Nuclear Matter Density

Defect wf χ(r) for particular
kinematics (k = 0, Pcm = 0)

AV18: “Wound integral”
provides expansion parameter

Extreme case here, but same
pattern in general

Tensor (3S1) =⇒ larger defect

Still a sizable wound for N3LO
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Outline

Teaser: Skyrme vs. pionless, perturbative functional

Bethe-Brueckner-Goldstone Power Counting

Preview for MBPT applied in finite nuclei

Operators and resolution
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High-order Rayleigh-Schrödinger MBPT in finite nuclei

R. Roth et al.

Excitation energies in 7Li

Degenerate R-S MBPT

SRG with two resolutions
from N3LO 2NF

Fixed HO model space
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é

p
=

2

p
=

3

p
=

4

p
=

8

0

2

4

6

8

10

12

14

.

E
∗

[M
eV

]

7Li

α = 0.04 fm4

Λ ≈ 2.24 fm−1

E
x
p
.

N
C

S
M

P
ad

é
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Order p = 2, 3, 4, and 8 compared to experiment, exact NCSM
calculations, and the Padé resummed result

=⇒ note the good agreement of the last two!
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The shell model revisited
 Configuration interaction techniques 

•  light and heavy nuclei 
•  detailed spectroscopy 
•  quantum correlations (lab-system description) 

!"#$%&#'"(#)%&*
+,-&.#)%&/0"#$%&#'"(#)%&**

1%&23*4#,'%*

5673,8#6'37*

• Direct comparison with 
experiment 

• Pseudo-data to inform 
reaction theory and DFT 

9&:-2;*.%&<$-,#)%&*7:#.3*/*=%,.37* 132>%0*
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Confronting theory and experiment to both driplines

Precision mass measurements test
impact of chiral 3NF

Proton rich [Holt et al., arXiv:1207.1509]

Neutron rich [Gallant et al., arXiv:1204.1987]

Many new tests possible!

Exciting advances for neutron-rich nuclei  

3N forces key to explain 24O as heaviest oxygen isotope 
Otsuka, Suzuki, Holt, Schwenk, Akaishi, Phys. Rev. Lett. 105, 032501 (2010). 

 

predicted increased binding for neutron-rich calcium 

 
confirmed in precision Penning trap exp. 

5! and 3! deviation in 51,52Ca from AME 
TITAN collaboration + Holt, Menendez, Schwenk, submitted. 

 

Impact on global predictions? 
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Non-empirical shell model [from J. Holt]

Solving the Nuclear Many-Body Problem 

Assume filled core 

Active nucleons occupy  
valence space 

- “sd”-valence space 

Interaction and energies of valence space orbitals from original Vlow k 
This alone does not reproduce experimental data 

0s 

0p 

0f,1p 

0g,1d,2s 

0h,1f,2p 

Nuclei understood as many-body system starting from closed shell, add nucleons 
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Non-empirical shell model [from J. Holt]

Solving the Nuclear Many-Body Problem 

Assume filled core 

Active nucleons occupy  
valence space 

- “sd”-valence space 

Interaction and energies of valence space orbitals from original Vlow k 
This alone does not reproduce experimental data – allow explicit breaking of core 

Strong interactions with core 
generate effective interaction 
between valence nucleons 

Hjorth-Jensen, Kuo, Osnes (1995) 
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Non-empirical shell model [from J. Holt]

Solving the Nuclear Many-Body Problem 

Assume filled core 

Active nucleons occupy  
valence space 

- “sd”-valence space 

Interaction and energies of valence space orbitals from original Vlow k 
This alone does not reproduce experimental data – allow explicit breaking of core 

Strong interactions with core 
generate effective interaction 
between valence nucleons 

Hjorth-Jensen, Kuo, Osnes (1995) 

Effective two-body matrix elements 
Single-particle energies (SPEs) 

0s 

0p 

0f,1p 

0g,1d,2s 

0h,1f,2p 

Nuclei understood as many-body system starting from closed shell, add nucleons 
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Chiral 3NFs meet the shell model [from J. Holt]
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126!

neutrons 

Drip Lines and Magic Numbers: 
The Evolving Nuclear Landscape 

3N forces essential for medium mass nuclei 

28!

Important in light nuclei, nuclear matter… 

What are the limits of  nuclear existence? 

How do magic numbers form and evolve? 

Heaviest oxygen isotope 

Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL (2010) 
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Chiral 3NFs meet the shell model [from J. Holt]

Normal-ordered 3N: contribution to valence neutron interactions 
3N Forces for Valence-Shell Theories 
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Chiral 3NFs meet the shell model [from J. Holt]
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1Important in light nuclei, nuclear matter… 

What are the limits of  nuclear existence? 

How do magic numbers form and evolve? N=28 magic number in calcium 

Holt, Otsuka, Schwek, 
Suzuki, arXiv:1009.5984 

3N forces essential for medium mass nuclei 
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DFT BBG Preview Operators Resolution ANC A = 2

Outline

Teaser: Skyrme vs. pionless, perturbative functional

Bethe-Brueckner-Goldstone Power Counting

Preview for MBPT applied in finite nuclei

Operators and resolution
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DFT BBG Preview Operators Resolution ANC A = 2

Unevolved long-distance operators change slowly with λ

Matrix elements dominated by long
range run slowly for λ > 2 fm−1

Here: examples from the deuteron
(compressed scales)

Which is the correct answer?

Are we using the complete
operator for the experimental
quadrupole moment?
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DFT BBG Preview Operators Resolution ANC A = 2

Deuteron electromagnetic form factors
GC , GQ , GM in deuteron with
chiral EFT at leading order
(Valderrama et al.)

NNLO 550/600 MeV potential

Unchanged at low q with
unevolved operators

Independent of λ with evolved
operators
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‘Non-observables’ vs. Scheme-dependent observables

Some quantities are in principle not observable
T.D. Lee: “The root of all symmetry principles lies in the
assumption that it is impossible to observe certain basic
quantities; these will be called ‘non-observables’.”
E.g., you can’t measure absolute position or time or a gauge

Directly measurable quantities are “clean” observables

E.g., cross sections and energies
Note: Association with a Hermitian operator is not enough!

Scale- and scheme-dependent derived quantities
Critical questions to address for each quantity:

What is the ambiguity or convention dependence?
Can one convert between different prescriptions?
Is there a consistent extraction from experiment such that
they can be compared with other processes and theory?

Physical quantities can be in-practice clean observables if
scheme dependence is negligible (e.g., (e,2e) from atoms)
How do we deal with dependence on the Hamiltonian?
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Partial list of ‘non-observables’ references

Equivalent Hamiltonians in scattering theory, H. Ekstein, (1960)

Measurability of the deuteron D state probability, J.L. Friar, (1979)

Problems in determining nuclear bound state wave functions,
R.D. Amado, (1979)

Nucleon nucleon bremsstrahlung: An example of the impossibility of
measuring off-shell amplitudes, H.W. Fearing, (1998)

Are occupation numbers observable?, rjf and H.-W. Hammer, (2002)

Unitary correlation in nuclear reaction theory: Separation of nuclear
reactions and spectroscopic factors, A.M. Mukhamedzhanov and
A.S. Kadyrov, (2010)

Non-observability of spectroscopic factors, B.K. Jennings, (2011)

How should one formulate, extract, and interpret ‘non-observables’
for nuclei?, rjf and A. Schwenk, (2010) [in J. Phys. G focus issue on
Open Problems in Nuclear Structure Theory, edited by J. Dobaczewski]



Source of scale-dependence for low-E structure
Measured cross section as convolution: reaction⊗structure

but separate parts are not unique, only the combination

Short-range unitary transformation U leaves m.e.’s invariant:

Omn ≡ 〈Ψm|Ô|Ψn〉 =
(
〈Ψm|U†

)
UÔU†

(
U|Ψn〉

)
= 〈Ψ̃m|Õ|Ψ̃n〉 ≡ Õm̃ñ

Note: matrix elements of operator Ô itself between the transformed
states are in general modified:

Om̃ñ ≡ 〈Ψ̃m|O|Ψ̃n〉 6= Omn =⇒ e.g., 〈ΨA−1
n |aα|ΨA

0 〉 changes

In a low-energy effective theory, transformations that modify
short-range unresolved physics =⇒ equally valid states.
So Õmn 6= Omn =⇒ scale/scheme dependent observables.

[Field theory version: the equivalence principle says that only on-shell
quantities can be measured. Field redefinitions change off-shell
dependence only. E.g., see rjf, Hammer, PLB 531, 203 (2002).]

RG unitary transformations change the decoupling scale =⇒
change the factorization scale. Use to characterize and explore
scale and scheme and process dependence!
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states are in general modified:
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All pieces mix with unitary transformation

A one-body current becomes many-body (cf. EFT current):

Ûρ̂(q)Û† = + α + · · ·

New wf correlations have appeared (or disappeared):

Û|ΨA
0 〉 = Û

12C(e, e′p)X

1966 1988 2006

+ · · · =⇒ Z

12C(e, e′p)X

1966 1988 2006

+ α

12C(e, e′p)X

1966 1988 2006

+ · · ·

Similarly with |Ψf 〉 = a†p|ΨA−1
n 〉

Thus spectroscopic factors are scale dependent

Final state interactions (FSI) are also modified by Û

Bottom line: the cross section is unchanged only if all pieces are
included, with the same U: H(λ), current operator, FSI, . . .



Deuteron scale-(in)dependent observables

0.51234510

Λ (fm
−1

)

0

0.01

0.02

0.03

0.04

0.05

0.06

P
D

−2.23

−2.225

−2.22

E
D

0.02

0.025

0.03

η
sd

AV18

D-state probability

Asymptotic D-S ratio

Binding energy (MeV)

0.512345

Λ (fm
−1

)

0

0.01

0.02

0.03

0.04

0.05

0.06

P
D

−2.23

−2.225

−2.22

E
D

0.02

0.025

0.03

η
sd

N
3
LO (500 MeV)

D-state probability

Asymptotic D-S ratio

Binding energy (MeV)

Vlow k RG transformations labeled by Λ (different VΛ’s)
=⇒ soften interactions by lowering resolution (scale)
=⇒ reduced short-range and tensor correlations

Energy and asymptotic D-S ratio are unchanged (cf. ANC’s)

But D-state probability changes (cf. spectroscopic factors)

Plan: Make analogous calculations for A > 2 quantities (like SFs)



DFT BBG Preview Operators Resolution ANC A = 2

Why are ANC’s different? Coordinate space
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ANC’s, like phase shifts, are asymptotic properties
=⇒ short-range unitary transformations do not alter them
[e.g., see Mukhamedzhanov/Kadyrov, PRC 82 (2010)]

In contrast, SF’s rely on interior wave function overlap
(Note difference in S-wave and D-wave ambiguities)
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DFT BBG Preview Operators Resolution ANC A = 2

Why are ANC’s different? Momentum space
[based on R.D. Amado, PRC 19 (1979)]

1 k2

2µ 〈k|ψn〉+〈k|V |ψn〉 = − γ
2
n

2µ 〈k|ψn〉

=⇒ 〈k|ψn〉 = −2µ〈k|V |ψn〉
k2 + γ2

n

2 〈r|ψn〉 =
∫ d3k

(2π)3 eik·r〈k|ψn〉
|r|→∞−→ Ane−γnr/r

3 integral dominated by pole from 1.

4 extrapolate 〈k|V |ψn〉 to k2 = −γ2
n
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Or, residue from extrapolating on-shell T-matrix to deuteron pole
=⇒ invariant under unitary transformations

Next vertex singularity at −(γ + mπ)2 =⇒ same for FSI
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How should one choose a scale/scheme?

To make calculations easier or more convergent
QCD running coupling and scale: improved perturbation theory;
choosing a gauge: e.g., Coulomb or Lorentz
Low-k potential: improve CI or MBPT convergence,

or to make microscopic connection to shell model or . . .
(Near-) local potential: quantum Monte Carlo methods work

Better interpretation or intuition =⇒ predictability
SRC phenomenology?

Cleanest extraction from experiment
Can one “optimize” validity of impulse approximation?
Ideally extract at one scale, evolve to others using RG

Plan: use range of scales to test calculations and physics
Use renormalization group to consistently relate scales and
quantitatively probe ambiguities (e.g., in spectroscopic factors)
Match Hamiltonians and operators (EFT) and then use RG



DFT BBG Preview Operators Resolution ANC A = 2

Operator flow in practice [e.g., see arXiv:1008.1569]

Evolution with s of any
operator O is given by:

Os = UsOU†s

so Os evolves via

dOs

ds
= [[Gs,Hs],Os]

Us =
∑

i |ψi (s)〉〈ψi (0)|
or solve dUs/ds flow

Matrix elements of evolved
operators are unchanged

Consider momentum
distribution < ψd |a†qaq |ψd >

at q = 0.34 and 3.0 fm−1

in deuteron
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DFT BBG Preview Operators Resolution ANC A = 2

High and low momentum operators in deuteron
Integrand of (Ua†qaqU†) for q = 0.34 fm−1

Integrand for q = 3.02 fm−1

Momentum
distribution
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One-body operator does not evolve (for “standard” SRG)

Induced two-body operator ≈ regularized delta function:
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DFT BBG Preview Operators Resolution ANC A = 2

High and low momentum operators in deuteron
Integrand of 〈ψd | (Ua†qaqU†) |ψd〉 for q = 0.34 fm−1

Integrand for q = 3.02 fm−1

Momentum
distribution
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Decoupling =⇒ High momentum components suppressed

Integrated value does not change, but nature of operator does

Similar for other operators:
〈
r2
〉
, 〈Qd 〉, 〈1/r〉

〈 1
r

〉
, 〈GC〉, . . .
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DFT BBG Preview Operators Resolution ANC A = 2

Is the tail of n(k) for nuclei measurable? (cf. SRC’s)
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E.g., extract from
electron scattering?

Scale- and scheme-
dependent
high-momentum tail!

n(k) from VSRG has
no high-momentum
components!

No region where
1/as � k � 1/R
(cf. large k limit for
unitary gas)
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DFT BBG Preview Operators Resolution ANC A = 2

What parts of wf’s can be extracted from experiment?

Measurable: asymptotic (IR) properties like phase shifts, ANC’s

Not observables, but well-defined theoretically given a Hamiltonian:
interior quantities like spectroscopic factors

These depend on the scale and the scheme
Extraction from experiment requires robust factorization of
structure and reaction; only the combination is scale/scheme
independent (e.g., cross sections) [What if weakly dependent?]

What about the high-momentum tails of momentum distributions?

Consider cold atoms in the unitary regime
Compare to nuclear case

Short-range correlations (SRCs) depend on the Hamiltonian and
the resolution scale (cf. parton distribution functions)

So might expect Hamiltonian- and resolution-dependent but
A-independent high-momentum tails of wave functions

Universal extrapolation for different A, but λSRG dependent
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