Nuclear forces and their impact on structure, reactions and astrophysics

Dick Furnstahl Ohio State University July, 2013

Lectures for Week 2

- M. Chiral EFT 1 (as); χ -symmetry in NN scattering, QCD 2 (rjf)
- T. Chiral EFT 2 (rjf); Three-nucleon forces 1 (as)
- W. Renormalization group 1 (rjf); Forces from LQCD (zd)
- Th. Renormalization group 2 (rjf); Three-nucleon forces 2 (as)
 - **F.** Many-body overview (rjf); Nuclear forces and electroweak interactions (as)

Outline

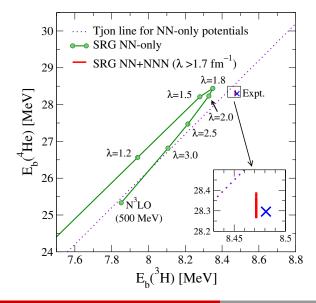
SRG leftovers

Overview of nuclear many-body problem

Many-body methods

Nuclear lattice simulations

Tjon line revisited



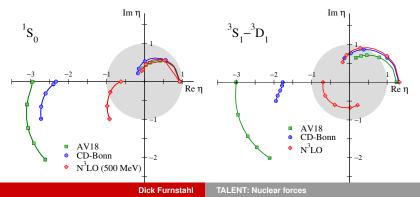
Weinberg eigenvalue analysis of convergence Born Series: $T(E) = V + V \frac{1}{E - H_0}V + V \frac{1}{E - H_0}V \frac{1}{E - H_0}V + \cdots$

For fixed *E*, find (complex) eigenvalues η_ν(*E*) [Weinberg]

 $\frac{1}{E-H_0}V|\Gamma_{\nu}\rangle = \eta_{\nu}|\Gamma_{\nu}\rangle \implies T(E)|\Gamma_{\nu}\rangle = V|\Gamma_{\nu}\rangle(1+\eta_{\nu}+\eta_{\nu}^2+\cdots)$

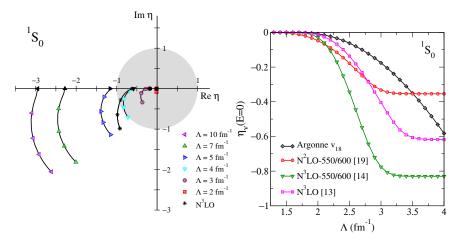
 \implies *T* diverges if any $|\eta_{\nu}(E)| \ge 1$

[nucl-th/0602060]



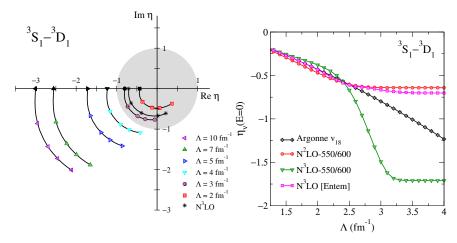
Lowering the cutoff increases "perturbativeness"

• Weinberg eigenvalue analysis (repulsive) [nucl-th/0602060]



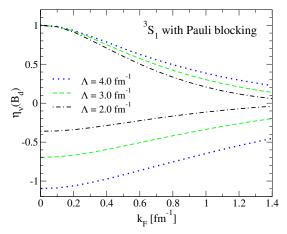
Lowering the cutoff increases "perturbativeness"

• Weinberg eigenvalue analysis (repulsive) [nucl-th/0602060]



Lowering the cutoff increases "perturbativeness"

• Weinberg eigenvalue analysis (η_{ν} at -2.22 MeV vs. density)

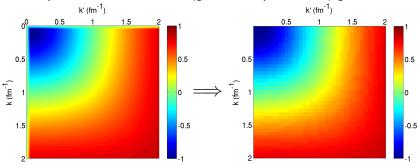


Pauli blocking in nuclear matter increases it even more!
 at Fermi surface, pairing revealed by |η_ν| > 1

Dick Furnstahl TALENT: Nuclear forces

Comments on computational aspects

• Although momentum is continuous in principle, in practice represented as discrete (gaussian quadrature) grid:



• Calculations become just matrix multiplications! E.g.,

$$\langle k|V|k\rangle + \sum_{k'} \frac{\langle k|V|k'\rangle\langle k'|V|k\rangle}{(k^2 - {k'}^2)/m} + \cdots \Longrightarrow V_{ii} + \sum_j V_{ij}V_{ji}\frac{1}{(k_i^2 - k_j^2)/m} + \cdots$$

• 100×100 resolution is sufficient for two-body potential

Discretization of integrals \implies matrices!

• Momentum-space flow equations have integrals like:

$$I(p,q) \equiv \int dk \, k^2 \, V(p,k) V(k,q)$$

• Introduce gaussian nodes and weights $\{k_n, w_n\}$ (n = 1, N)

$$\implies \int dk f(k) \approx \sum_n w_n f(k_n)$$

• Then $I(p,q) \rightarrow I_{ij}$, where $p = k_i$ and $q = k_j$, and

$$I_{ij} = \sum_n k_n^2 w_n \, V_{in} V_{nj}
ightarrow \sum_n \widetilde{V}_{in} \widetilde{V}_{nj}$$
 where $\widetilde{V}_{ij} = \sqrt{w_i} k_i \, V_{ij} \, k_j \sqrt{w_j}$

- Lets us solve SRG equations, integral equation for phase shift, Schrödinger equation in momentum representation, ...
- In practice, N=100 gauss points more than enough for accurate nucleon-nucleon partial waves

MATLAB Code for SRG is a direct translation!

- The flow equation $\frac{d}{ds}V_s = [[T, H_s], H_s]$ is solved by discretizing, so it is just matrix multiplication.
- If the matrix V_s is converted to a vector by "reshaping", it can be fed to a differential equation solver, with the right side:

```
% V_s is a vector of the current potential; convert to square matrix
V_s_matrix = reshape(V_s, tot_pts, tot_pts);
H_s_matrix = T_matrix + V_s_matrix; % form the Hamiltontian
% Matrix for the right side of the SRG differential equation
if (strcmp(evolution,'T'))
rhs_matrix = my_commutator( my_commutator(T_matrix, H_s_matrix), ...
H_s_matrix );
```

[etc.]

% convert the right side matrix to a vector to be returned dVds = reshape(rhs_matrix, tot_pts*tot_pts, 1);

Pseudocode for SRG evolution

- Set up basis (e.g., momentum grid with gaussian quadrature or HO wave functions with N_{max})
- 2 Calculate (or input) the initial Hamiltonian and G_s matrix elements (including any weight factors)
- Solution Reshape the right side $[[G_s, H_s], H_s]$ to a vector and pass it to a coupled differential equation solver
- Integrate V_s to desired s (or $\lambda = s^{-1/4}$)
- Diagonalize H_s with standard symmetric eigensolver \implies energies and eigenvectors
- **6** Form $U = \sum_{i} |\psi_{s}^{(i)}\rangle \langle \psi_{s=0}^{(i)}|$ from the eigenvectors
- Output or plot or calculate observables

Many versions of SRG codes are in use

- Mathematica, MATLAB, Python, C++, Fortran-90
 - Instructive computational project for undergraduates!
- Once there are discretized matrices, the solver is the same with any size basis in any number of dimensions!
- Still the same solution code for a many-particle basis
- Any basis can be used
 - For 3NF, harmonic oscillators, discretized partial-wave momentum, and hyperspherical harmonics are available
 - An accurate 3NF evolution in HO basis takes ~ 20 million matrix elements ⇒ that many differential equations

Outline

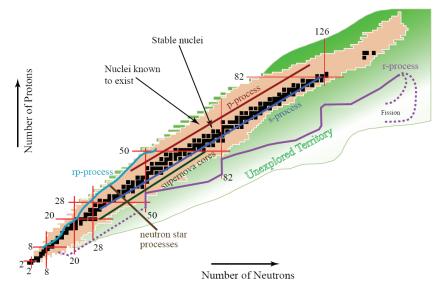
SRG leftovers

Overview of nuclear many-body problem

Many-body methods

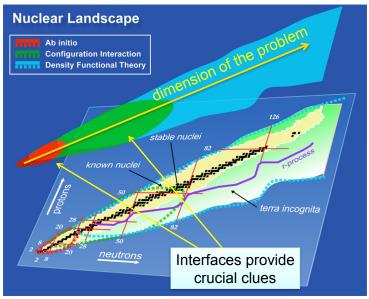
Nuclear lattice simulations

Low-energy playground: Table of the nuclides



Dick Furnstahl TALENT: Nuclear forces

Overlapping theory methods cover all nuclei



Dick Furnstahl TALENT: Nuclear forces

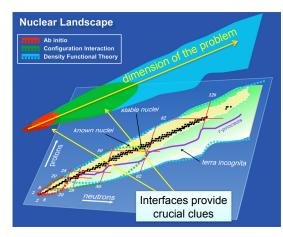
What is "new" about theory methods? (examples)

Really an explosion of new things!

- New methods for theoretical inputs (Hamiltonians and operators)
 - Three-body (and higher) forces (N3LO chiral 3NF, RG methods)
- New extensions of established microscopic techniques
 - e.g., IT-NCSM, MBPT, Berggren basis, LIT
 - Spectroscopic factors, ANCs, ... (e.g., with GFMC, CC)
- New microscopic many-body techniques
 - e.g., Lattice EFT, IM-SRG, NCSM/RGM
- New analysis methods/philosophy (theory error bars!!)
 - Correlation analysis of energy functionals
 - Power counting, benchmarking, ...
- New computational reach (e.g., from SciDAC projects)
 - Better scaling: massively parallel codes, load balancing
 - Improved algorithms: e.g., optimization (POUNDERS)

Why do we need so many different methods?

- Each method has strengths and limitations
- Need to cross-check results
- Exploit overlapping domains
- Trade-offs: Superior scaling vs. accuracy or more microscopic or ...



Outline

SRG leftovers

Overview of nuclear many-body problem

Many-body methods

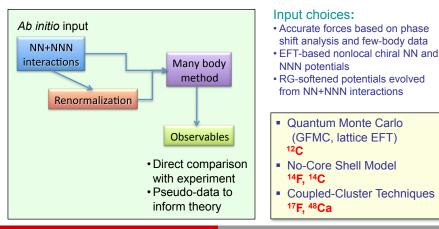
Nuclear lattice simulations

Fully microscopic (from input NN + NNN)

Ab initio theory for light nuclei and uniform matter

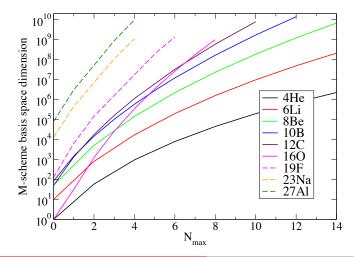
Ab initio: QMC, NCSM, CC,...

(nuclei, neutron droplets, nuclear matter)



Size and sparsity of Hamiltonian matrices [from P. Maris]

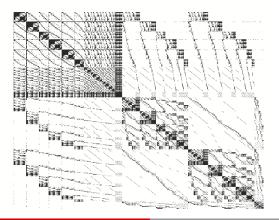
 Hamiltonian matrices grow rapidly with basis size (N_{max}) and A = N + Z from combinatorics:



Dick Furnstahl TALENT: Nuclear forces

Size and sparsity of Hamiltonian matrices [from P. Maris]

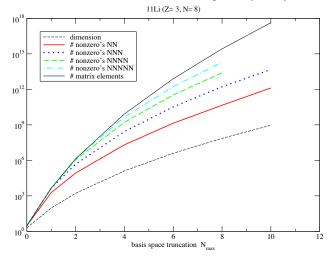
- But fortunately there are many zero elements so storage is large but feasible. How can we take advantage of sparsity?
 - Sparsity Structure for ⁶Li



Dick Furnstahl TALENT: Nuclear forces

Size and sparsity of Hamiltonian matrices [from P. Maris]

• But fortunately there are many zero elements so storage is large but feasible. How can we take advantage of sparsity?



Dick Furnstahl TALENT: Nuclear forces

NCSM

Lanczos method in short

- Consider an arbitrary vector $|\Psi\rangle$ and its expansion in eigenstates of H, where $H|\psi_k\rangle = E_k |\psi_k\rangle$. Then $H^m |\Psi\rangle = \sum_k C_k E_k^m |\psi_k\rangle$
 - If *m* large enough, largest $|E_k|$ will dominate the sum ⇒ project out the corresponding eigenvector
 - To get lowest eigenvalue, use $(H \sigma I)^m$ with $\sigma > 0$ large enough so that $|E_0 - \sigma| > |E_{\max} - \sigma|$
- More efficient to diagonalize H in the basis spanned by $H|\psi_k\rangle$, $H^2|\psi_k\rangle,\ldots,H^m|\psi_k\rangle$
 - Called the "Krylov space"
 - Lanczos: orthogonalize basis states as you go, generating H in tri-diagonal form, which is efficiently diagonalized
 - Re-orthonormalization for numerical stability
- Many computational advantages to treating sparse matrices with Lanczos [see J. Vary et al., arXiv:0907.0209]

U.S. DEPARTMENT OF ENERGY

"Why does Carbon-14 live so long?"

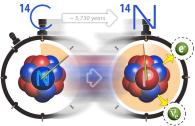
Carbon-14 dating relies on ~5,730 year half-life, but other light nuclei undergo similar beta decay with half-lives less than a day!

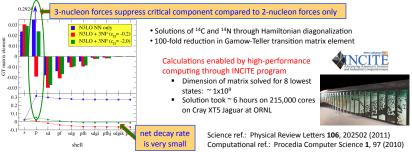
UNEDF SciDAC Collaboration Universal Nuclear Energy Density Functional

Office of

Science

- Members of UNEDF collaboration made microscopic nuclear structure calculations to solve the puzzle
- Used systematic chiral Hamiltonian from low-energy effective field theory of QCD
- Key feature: consistent 3-nucleon interactions





TALENT: Nuclear forces

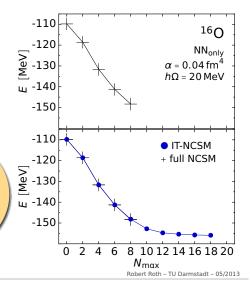
Importance Truncated NCSM [Roth et al.]

Roth, PRC 79, 064324 (2009); PRL 99, 092501 (2007)

- converged NCSM calculations essentially restricted to lower/mid p-shell
- full N_{max} = 10 calculation for ¹⁶O very difficult (basis dimension > 10¹⁰)

Importance Truncation

reduce model space to the relevant basis states using an **a priori importance measure** derived from MBPT



Coupled cluster method [from D. Dean, G. Hagen, T. Papenbrock] Coupled-cluster method (in CCSD approximation)

Ansatz:

$$\begin{aligned} |\Psi\rangle &= e^{T} |\Phi\rangle \\ T &= T_{1} + T_{2} + \dots \\ T_{1} &= \sum_{ia} t_{i}^{a} a_{a}^{\dagger} a_{i} \\ T_{2} &= \sum_{ijab} t_{ij}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j} a_{i} \end{aligned}$$

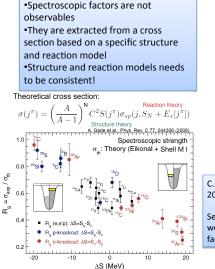
 $T \rightarrow$

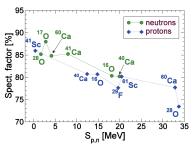
- Scales gently (polynomial) with increasing problem size o²u⁴.
- Truncation is the only approximation. \odot
- Size extensive (error scales with A) \odot
- Most efficient for doubly magic nuclei

Correlations are exponentiated 1p-1h and 2p-2h excitations. Part of np-nh excitations included!

 a, b, \dots *i*. *j*. . . . Coupled cluster equations $E = \langle \Phi | \overline{H} | \Phi \rangle$ Alternative view: CCSD generates similarity $0 = \langle \Phi_i^a | \overline{H} | \Phi \rangle$ transformed Hamiltonian with no 1p-1h and $0 = \langle \Phi_{ii}^{ab} | \overline{H} | \Phi \rangle$ no 2p-2h excitations. $\overline{H} \equiv e^{-T}He^{T} = \left(He^{T}\right)_{c} = \left(H + HT_{1} + HT_{2} + \frac{1}{2}HT_{1}^{2} + \dots\right)$

Coupled cluster method [from D. Dean, G. Hagen, T. Papenbrock] Asymmetry dependence and spectroscopic factors





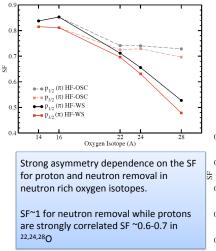
C. Barbieri, W.H.Dickhoff, Int. Jour. Mod. Phys. A24, 2060 (2009).

Self-consistent green's function method show rather weak asymmetry dependence for the spectroscopic factor.

Dick Furnstahl TALENT: Nuclear forces

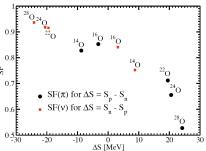
NCSM

Coupled cluster method [from D. Dean, G. Hagen, T. Papenbrock] Quenching of spectroscopic factors for proton removal in neutron rich oxygen isotopes



Spectroscopic factor is a useful tool to study correlations towards the dripline.

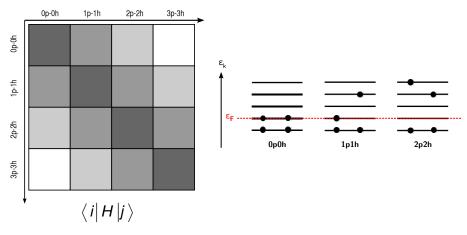
SF for proton removal in neutron rich ²⁴O show strong "quenching" pointing to large deviations from a mean-field like picture. G. Hagen et al Phys. Rev. Lett. 107, 032501 (2011).



Dick Eurnstahl **TALENT: Nuclear forces**

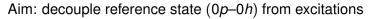
In-medium SRG decoupling [slides from H. Hergert]

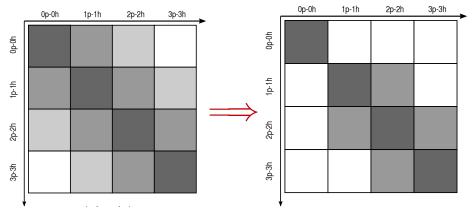
Consider SRG with 0p-0h reference state (instead of vacuum)



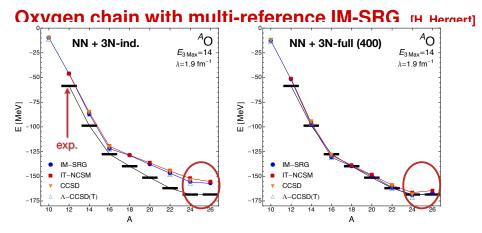
K. Tsukiyama, S. K. Bogner, and A. Schwenk, PRL 106, 222502 (2011)

In-medium SRG decoupling [H. Hergert]





K. Tsukiyama, S. K. Bogner, and A. Schwenk, PRL 106, 222502 (2011)



- ref. state: number-projected Hartree-Fock-Bogoliubov vacuum
- results (mostly) insensitive to choice of generator for same H^{od}
- consistency between different many-body methods

Scott Bogner - Michigan State University - NUCLEI Collaboration Meeting, Indiana University Bloomington, 06/25/13

Outline

SRG leftovers

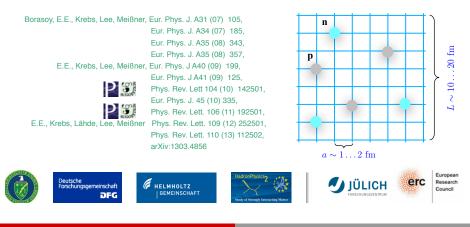
Overview of nuclear many-body problem

Many-body methods

Nuclear lattice simulations

Lattice EFT collaboration [E. Epelbaum] Nuclear Lattice Effective Field Theory

The Collaboration: E.E., Hermann Krebs (Bochum), Timo Lähde (Jülich), Dean Lee (NC State), Ulf-G. Meißner (Bonn/Jülich), Gautam Rupak (Mississippi State)



Dick Furnstahl

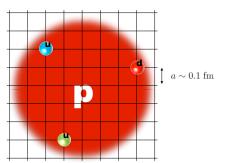
TALENT: Nuclear forces

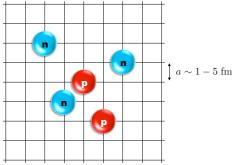
Lattice QCD versus lattice EFT [from Dean Lee]

Compare variables and lattice spacing *a*:

Lattice quantum chromodynamics

Lattice effective field theory





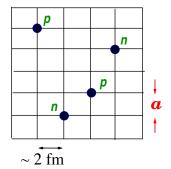
NM DF

Lattice EFT basics [from U. Meißner]

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000) , Lee, Schäfer (2004), . . . Borasoy, Krebs, Lee, UGM, Nucl. Phys. A768 (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. A31 (2007) 105

- new method to tackle the nuclear many-body problem
- discretize space-time $V = L_s \times L_s \times L_s \times L_t$: nucleons are point-like fields on the sites
- discretized chiral potential w/ pion exchanges and contact interactions
- typical lattice parameters

$$\Lambda = rac{\pi}{a} \simeq 300 \, ext{MeV} \, [ext{UV cutoff}]$$



- strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

 J. W. Chen, D. Lee and T. Schäfer, Phys. Rev. Lett. 93 (2004) 242302
- hybrid Monte Carlo & transfer matrix (similar to LQCD)

Lattice EFT basics [from U. Meißner]

 \Rightarrow all *possible* configurations are sampled \Rightarrow *clustering* emerges *naturally*

Lattice EFT basics [from U. Meißner]

- Correlation–function for A nucleons: $Z_A(t) = \langle \Psi_A | \exp(-tH) | \Psi_A \rangle$ with Ψ_A a Slater determinant for A free nucleons
- Ground state energy from the time derivative of the correlator

$$E_A(t) = -rac{d}{dt}\,\ln Z_A(t)$$

ightarrow ground state filtered out at large times: $E_A^0 = \lim_{t \to \infty} E_A(t)$

• Expectation value of any normal–ordered operator ${\cal O}$

$$Z_A^{\mathcal{O}} = raket{\Psi_A} \exp(-t H/2) \, \mathcal{O} \, \exp(-t H/2) \ket{\Psi_A}$$

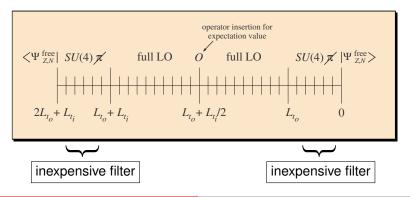
$$\lim_{t o\infty}\,rac{Z^{\mathcal{O}}_A(t)}{Z_A(t)}=ra{\Psi_A}ra{\mathcal{O}}\ket{\Psi_A}$$

Lattice EFT basics [from U. Meißner]

• Expectation value of any normal–ordered operator ${\cal O}$

$$egin{aligned} &\langle \Psi_A | \mathcal{O} \left| \Psi_A
ight
angle = \lim_{t o \infty} \; rac{\langle \Psi_A | \exp(-tH/2) \, \mathcal{O} \; \exp(-tH/2) \left| \Psi_A
ight
angle \ &\langle \Psi_A | \exp(-tH) | \Psi_A
angle \end{aligned}$$

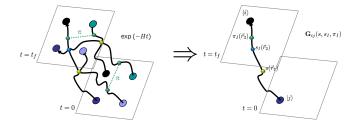
Anatomy of the transfer matrix



Lattice EFT basics [from U. Meißner]

• Contact interactions represented by auxiliary fields s, s_I

• Correlation function = path-integral over pions & auxiliary fields



Ground states of ⁸Be and ¹²C [E. Epelbaum]

E.E., Krebs, Lee, Meißner, PRL 106 (11) 192501

-40 LO'------ANLO-IS 15 ΔIB + ΔEM >···▲··· -70 -45 ANNLO 30 + ΔEM 10 ANNLO -80 -50 E(t) (MeV) 20 E(I) (MeV) ANNLO (2) -90 -55 10 -100 -60 -5 -110 -65 -10 -120 0.02 0.04 0.06 0.08 0.1 0.12 0.02 0.04 0.06 0.08 0.1 0.12 0.02 0.04 0.06 0.08 0.1 0.12 0.02 0.04 0.06 0.08 0.1 0.12 0 n 0 t (MeV1) t (MeV⁻¹) t (MeV⁻¹) t (MeV⁻¹)

Simulations for 8Be and 12C, L=11.8 fm

Ground state energies (L=11.8 fm) of ⁴He, ⁸Be, ¹²C & ¹⁶O

	⁴ He	⁸ Be	$^{12}\mathrm{C}$	¹⁶ O
LO $[Q^0]$, in MeV NLO $[Q^2]$, in MeV NNLO $[Q^3]$, in MeV Experiment, in MeV	$\begin{array}{r} -28.0(3) \\ -24.9(5) \\ -28.3(6) \\ -28.30 \end{array}$	$ \begin{array}{r} -57(2) \\ -47(2) \\ -55(2) \\ -56.5 \end{array} $	-96(2) -77(3) -92(3) -92.2	$-144(4) \\ -116(6) \\ -135(6) \\ -127.6$

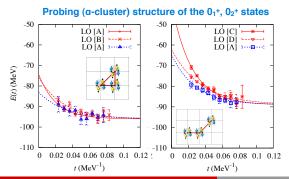
NM DF

Hoyle State [E. Epelbaum]

EE, Krebs, Lähde, Lee, Meißner, PRL 106 (2011) 192501; PRL 109 (2012) 252501

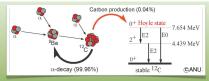
Lattice results for low-lying even-parity states of ¹²C

	0_{1}^{+}	$2^+_1(E^+)$	0_{2}^{+}	$2^+_2(E^+)$
LO	-96(2)	-94(2)	-89(2)	-88(2)
NLO	-77(3)	-74(3)	-72(3)	-70(3)
NNLO	-92(3)	-89(3)	-85(3)	-83(3)
Exp	-92.16	-87.72	-84.51	-82(1)



RMS radii and quadrupole moments

	LO	Experiment
$r(0_1^+)$ [fm]	2.2(2)	2.47(2) [26]
$r(2_1^+)$ [fm]	2.2(2)	-
$Q(2_1^+) [e {\rm fm}^2]$	6(2)	6(3) [27]
$r(0_2^+)$ [fm]	2.4(2)	-
$r(2_2^+)$ [fm]	2.4(2)	-
$Q(2_2^+) \ [e \ {\rm fm}^2]$	-7(2)	_



The triple alpha reaction rate as a function of the quark mass

Production of ¹²C in stars depends sensitively on the energy differences: $\Delta E_b \equiv E_8 - 2E_4$, $\Delta E_h \equiv E_{12}^* - E_8 - E_4$

 $\begin{array}{ll} \mbox{Reaction rate for the triple alpha process:} & r_{3\alpha} \simeq 3^{\frac{3}{2}} N_{\alpha}^3 \left(\frac{2\pi\hbar^2}{M_{\alpha}k_{\rm B}T} \right)^3 \frac{\Gamma_{\gamma}}{\hbar} \, \exp\left(-\frac{\varepsilon}{k_{\rm B}T} \right) \\ \mbox{Oberhummer, Csoto, Schlattl, Science 289 (2000) 88} \end{array}$

where $\varepsilon \equiv \Delta E_b + \Delta E_h = E_{12}^{\star} - 3E_4 = 379.47(18) \text{ keV}$ - crucial control parameter

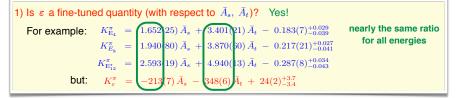
Changing ε by ~100 keV destroys production of either ¹²C or ¹⁶O Livio et al.'89; Oberhummer, et al.'00 How robust is ε with respect to variations of fundamental constants (QCD+QED)?

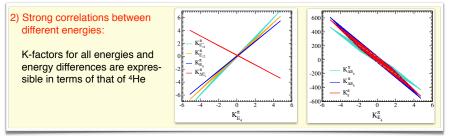
Quark mass dependence of the triple- α reaction rate

EE, Krebs, Lähde, Lee, Meißner, PRL 110 (2013) 112502; arXiv:1303.4856 (to appear in EPJA)

Input: M_{π} -dependence of the long-range force known, short-range M_{π} -dependence parametrized in terms of

spin-singlet (¹S₀):
$$\bar{A}_s \equiv \frac{\partial a_s^{-1}}{\partial M_{\pi}}\Big|_{M_s^{\text{phys}}}$$
 spin-triplet (³S₁): $\bar{A}_t \equiv \frac{\partial a_t^{-1}}{\partial M_{\pi}}\Big|_{M_s^{\text{phys}}}$





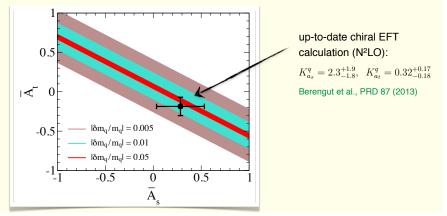
Quark mass dependence of the triple- α reaction rate

EE, Krebs, Lähde, Lee, Meißner, PRL 110 (2013) 112502; arXiv:1303.4856 (to appear in EPJA)

3) How much change in m_q can be accommodated to still have enough ¹²C, ¹⁶O production?

 $|\delta\varepsilon| < 100 \text{ keV} \longrightarrow \left| \left(0.771(14) \bar{A}_s + 0.934(11) \bar{A}_t - 0.069(6) \right) \frac{\delta m_q}{m_q} \right| < 0.0015$

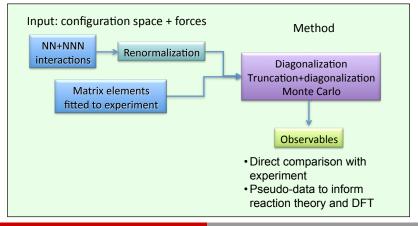
"Survivability bands" for carbon-oxygen based life due to 0.5%, 1%, 5% variation of $m_{\rm q}$



The shell model revisited

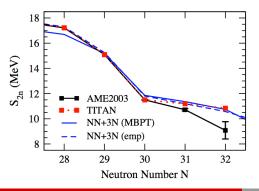
Configuration interaction techniques

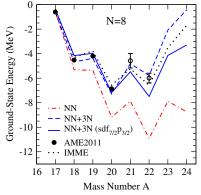
- · light and heavy nuclei
- detailed spectroscopy
- quantum correlations (lab-system description)



Confronting theory and experiment to both driplines

- Precision mass measurements test impact of chiral 3NF
- Proton rich [Holt et al., arXiv:1207.1509]
- Neutron rich [Gallant et al., arXiv:1204.1987]
- Many new tests possible!

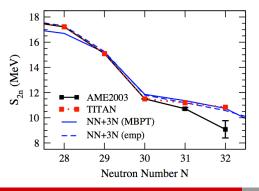


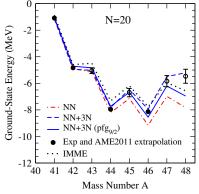


- Shell model description using chiral potential evolved to V_{low k} plus 3NF fit to A = 3, 4
- Excitations outside valence space included in 3rd order MBPT

Confronting theory and experiment to both driplines

- Precision mass measurements test impact of chiral 3NF
- Proton rich [Holt et al., arXiv:1207.1509]
- Neutron rich [Gallant et al., arXiv:1204.1987]
- Many new tests possible!

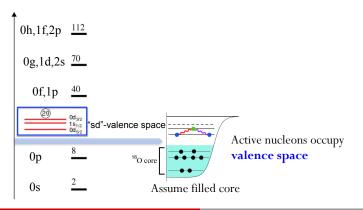




- Shell model description using chiral potential evolved to V_{low k} plus 3NF fit to A = 3, 4
- Excitations outside valence space included in 3rd order MBPT

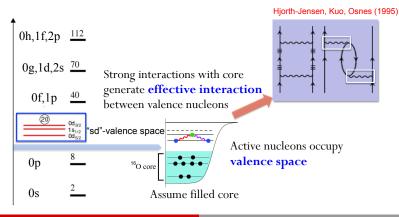
Non-empirical shell model [from J. Holt] Solving the Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Interaction and energies of valence space orbitals from original $V_{\text{low }k}$ **This alone does not reproduce experimental data**



Non-empirical shell model [from J. Holt] Solving the Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Interaction and energies of valence space orbitals from original $V_{\text{low }k}$. This alone does not reproduce experimental data – allow explicit breaking of core

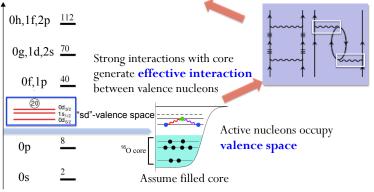


Non-empirical shell model [from J. Holt] Solving the Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Interaction and energies of valence space orbitals from original $V_{\text{low }k}$. This alone does not reproduce experimental data – allow explicit breaking of core

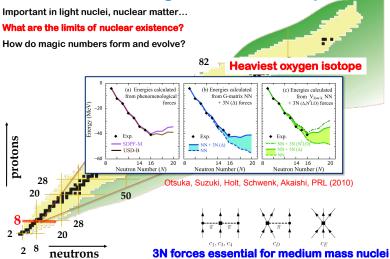
Effective two-body matrix elements Single-particle energies (SPEs)

Hjorth-Jensen, Kuo, Osnes (1995)



SRG Overview Methods Lattice NM DF

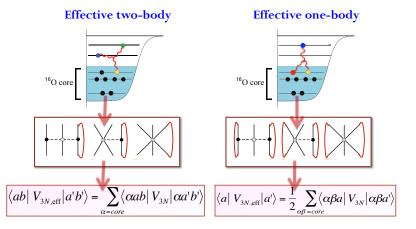
Chiral 3NFs meet the shell model [from J. Holt] Drip Lines and Magic Numbers: The Evolving Nuclear Landscape



Dick Furnstahl TALENT: Nuclear forces

Chiral 3NFs meet the shell model [from J. Holt] 3N Forces for Valence-Shell Theories

Normal-ordered 3N: contribution to valence neutron interactions



Combine with microscopic NN: eliminate empirical adjustments

SRG Overview Methods Lattice NM D

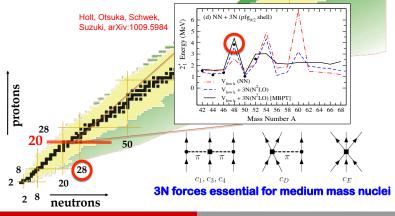
Chiral 3NFs meet the shell model [from J. Holt] Drip Lines and Magic Numbers: 3N Forces in Medium-Mass Nuclei

Important in light nuclei, nuclear matter...

What are the limits of nuclear existence?

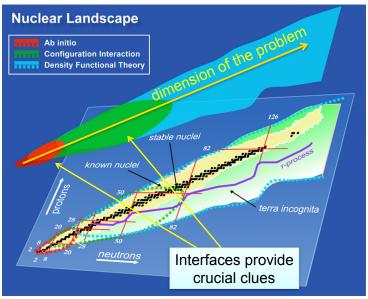
How do magic numbers form and evolve?

N=28 magic number in calcium



Dick Furnstahl TALENT: Nuclear forces

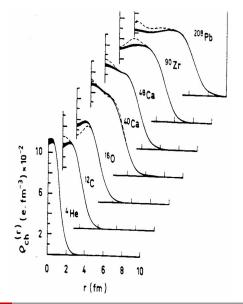
Overlapping theory methods cover all nuclei



Dick Furnstahl TALENT: Nuclear forces

What do (ordinary) nuclei look like?

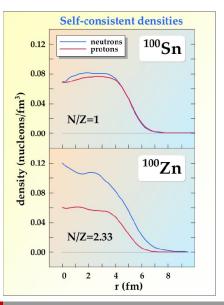
- Charge densities of magic nuclei (mostly) shown
- Proton density has to be "unfolded" from ρ_{charge}(r), which comes from elastic electron scattering
- Roughly constant interior density with $R \approx (1.1-1.2 \text{ fm}) \cdot A^{1/3}$
- Roughly constant surface thickness
- \implies Like a liquid drop!



Dick Eurnstahl

What do (ordinary) nuclei look like?

- Charge densities of magic nuclei (mostly) shown
- Proton density has to be "unfolded" from ρ_{charge}(r), which comes from elastic electron scattering
- Roughly constant interior density with $R \approx (1.1-1.2 \text{ fm}) \cdot A^{1/3}$
- Roughly constant surface thickness
- \implies Like a liquid drop!

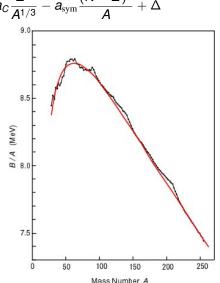


Semi-empirical mass formula (A = N + Z)

$$E_B(N,Z) = a_v A - a_s A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_{sym} \frac{(N-Z)^2}{A} + 1$$

Many predictions!

- Rough numbers: $a_v \approx 16$ MeV, $a_s \approx 18$ MeV, $a_C \approx 0.7$ MeV, $a_{\rm sym} \approx 28$ MeV
- Pairing $\Delta \approx \pm 12/\sqrt{A}$ MeV (even-even/odd-odd) or 0 [or 43/ $A^{3/4}$ MeV or ...]
- Surface symmetry energy: $a_{\text{surf sym}}(N-Z)^2/A^{4/3}$
- Much more sophisticated mass formulas include shell effects, etc.

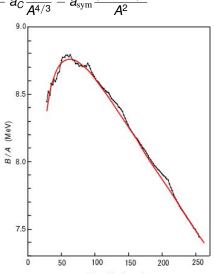


Semi-empirical mass formula per nucleon

$$\frac{E_B(N,Z)}{A} = a_v - a_s A^{-1/3} - a_C \frac{Z^2}{A^{4/3}} - a_{\rm sym} \frac{(N-Z)^2}{A^2}$$

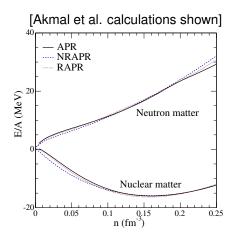
• Divide terms by A = N + Z

- Rough numbers: $a_{\nu} \approx 16$ MeV, $a_{s} \approx 18$ MeV, $a_C \approx 0.7 \,\mathrm{MeV}, \, a_{\mathrm{sym}} \approx 28 \,\mathrm{MeV}$
- Surface symmetry energy: $a_{\rm surf \ sym}(N-Z)^2/A^{7/3}$
- Now take $A \to \infty$ with Coulomb \rightarrow 0 and fixed N/A, Z/A
- Surface terms negligible



Mass Number A

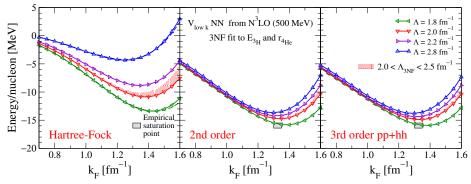
Nuclear and neutron matter energy vs. density



- Uniform with Coulomb turned off
- Density *n* (or often ρ)
- Fermi momentum $n = (\nu/6\pi^2)k_F^3$
- Neutron matter (Z = 0) has positive pressure
- Symmetric nuclear matter (*N* = *Z* = *A*/2) saturates
- *Empirical* saturation at about $E/A \approx -16$ MeV and $n \approx 0.17 \pm 0.03$ fm⁻³

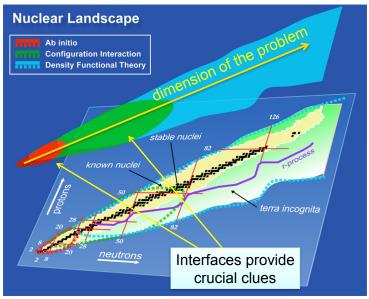
Low resolution calculations of nuclear matter

- Evolve NN by RG to low momentum, fit NNN to A = 3, 4
- Predict nuclear matter in MBPT [Hebeler et al. (2011)]



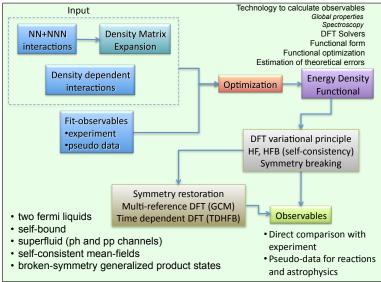
- Cutoff dependence at 2nd order significantly reduced
- 3rd order contributions are small
- Remaining cutoff dependence: many-body corrections, 4NF?

Overlapping theory methods cover all nuclei

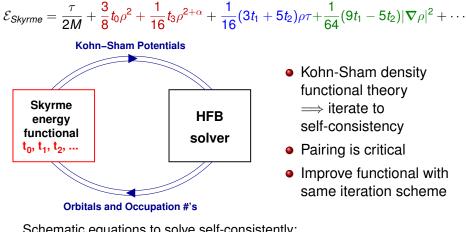


Dick Furnstahl TALENT: Nuclear forces

DFT for nuclei [UNEDF and NUCLEI projects] Nuclear Density Functional Theory and Extensions

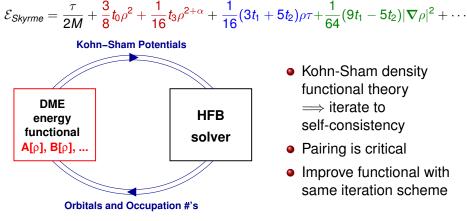


Skyrme EDF and beyond



$$V_{\rm KS}(\mathbf{r}) = \frac{\delta E_{\rm int}[\rho]}{\delta \rho(\mathbf{r})} \iff [-\frac{\nabla^2}{2m} + V_{\rm KS}(\mathbf{x})]\psi_{\alpha} = \varepsilon_{\alpha}\psi_{\alpha} \implies \rho(\mathbf{x}) = \sum_{\alpha} n_{\alpha}|\psi_{\alpha}(\mathbf{x})|^2$$

Skyrme EDF and beyond



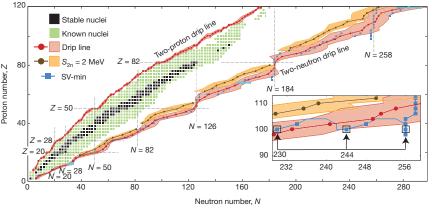
Schematic equations to solve self-consistently:

$$V_{\rm KS}(\mathbf{r}) = \frac{\delta E_{\rm int}[\rho]}{\delta \rho(\mathbf{r})} \iff [-\frac{\boldsymbol{\nabla}^2}{2m} + V_{\rm KS}(\mathbf{x})]\psi_\alpha = \varepsilon_\alpha \psi_\alpha \implies \rho(\mathbf{x}) = \sum_\alpha n_\alpha |\psi_\alpha(\mathbf{x})|^2$$

NM DFT

"The limits of the nuclear landscape"

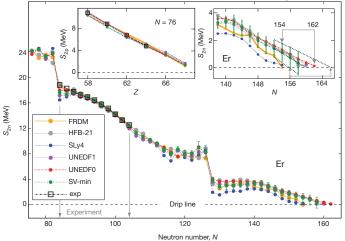
J. Erler et al., Nature 486, 509 (2012)



- Proton and neutron driplines predicted by Skyrme EDFs
 - Total: 6900 \pm 500 nuclei with Z \leq 120 (\approx 3000 known)
 - Estimate systematic errors by comparing models

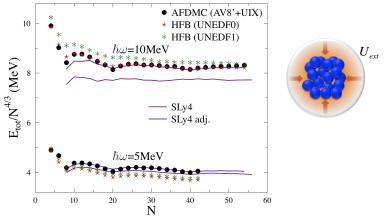
DFT

"The limits of the nuclear landscape"



- Two-neutron separation energies of even-even erbium isotopes
 - Compare different functionals, with uncertainties of fits
 - Dependence on neutron excess poorly determined (cf. driplines) •

UNEDF Project: Use ab initio pseudo-data



- Put neutrons in a harmonic oscillator trap with $\hbar\omega$ (cf. cold atoms!)
- Calculate exact result with AFDMC [S. Gandolfi, J. Carlson, and S.C. Pieper, Phys. Rev. Lett. 106, 012501 (2011)] (or with other methods)
- UNEDF0 and UNEDF1 functionals improve over Skyrme SLy4!

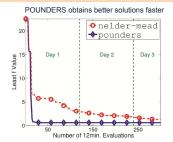
Interaction with applied math experts Optimization Algorithms for Calibrating Extreme Scale Simulations

Typical Challenges

- Computational expense of simulation only allows for evaluating a few sets of parameter values
- Derivatives with respect to parameters can be unavailable or intractable to compute/approximate
- Experimental data incomplete or inaccurate
- Sensitivity analysis/confidence regions desired

New Algorithm POUNDERS

- Exploits mathematical structure in calibration problems
- Benefits from expert knowledge
 > data, weights, uncertainties, etc.
- Obtains good fits in minimal number of simulations

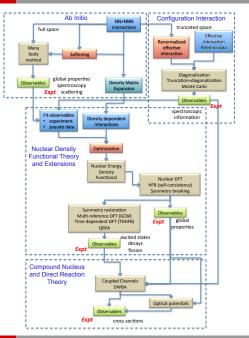


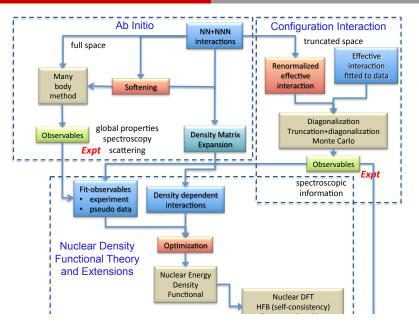
Energy density functionals (EDFs) for UNEDF

Enables fitting of complex, state-of-the-art EDFs

- Optimization previously avoided because too many evaluations required to obtain desirable features
- Substantial computational savings over alternatives
- •Using resulting EDF parameterizations, the entire nuclear mass table was computed and is now distributed at www.massexplorer.org
 - Nuclear Energy Density Optimization. Kortelainen et al., Physical Review C 82, 024313, 2010
 - > Three joint physics & optimization publications @ SciDAC11!

- SciDAC-2 UNEDF project
- Universal Nuclear Energy
 Density Functional
- Collaboration of physicists, applied mathematicians, and computer scientists
- US funding but international collaborators also
- See unedf.org for highlights!
- New SciDAC-3 NUCLEI project: NUclear Computational Low-Energy Initiative





NM DFT

Interaction with computer science experts

"Load Balancing at Extreme Scale" – Ewing Lusk, Argonne National Laboratory

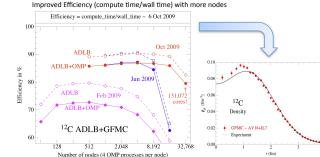
ASCR- SciDAC UNEDF Computer Science Highlight

Objectives

- Enable Green's Function Monte Carlo calculations for ¹²C on full BG/P as part of UNEDF project
- Simplify programming model
- Scale to leadership class machines

Impact

- Demonstrate capabilities of simple programming models at petascale and beyond
- Show path forward with hybrid programming models in library implementation



Progress

- Initial load balancing was of CPU cycles
- Next it became necessary to balance memory utilization as well
- Finally ADLB acquired the capability to balance message flow
- "More Scalability, Less Pain" by E. Lusk, S.C. Pieper and R. Butler published in SciDAC Review 17, 30 (2010)

SciDAC-3 NUCLEI Project

