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figure from H. Krebs 



Hierarchy of nuclear forces in chiral EFT 

figure from U.-G. Meißner 

breakdown scale Λb = Λχ ~ 500-1000 MeV 



neutron-proton S-, P-, D-wave phase shifts in chiral EFT 

bands from cutoff variation (estimates higher-order short-range parts) 

N3LO 

figure from U.-G. Meißner 
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Figure 2: Neutron-proton phase shifts and mixing angles calculated using N3LO �EFT potentials of
Ref. [10] (shaded bands) and Ref. [9] (dashed lines) in comparison with the Nijmegen [11] (filled circles)
and SAID [12] (open triangles) partial wave analyses. Also shown are leading-order cutoff-independent
results of Ref. [13] (dotted lines).

The most interesting part of the novel chiral NN force is two-pion (2⇥-) exchange which con-
stitutes the second-longest contribution to the NN potential and, therefore, has significant impact
on the energy dependence of the scattering amplitude. Indeed, its evidence has been confirmed
in the partial wave analysis of the Nijmegen group [14], see also [15]. In agreement with expec-
tations based on phenomenological studies, one observes a very strong attractive isoscalar central
potential. This by far the strongest 2⇥-exchange contribution emerges, however, only at next-to-
next-to-leading order (N2LO) as a correction to the nominally dominant 2⇥-exchange potential at
next-to-leading order (NLO). This peculiar pattern is well understood and can be traced back to
the intermediate excitation of the �(1232) isobar at one of the nucleons which gives rise to a very
strong attractive isoscalar central NN force [8, 16, 17]. In the standard formulation of �EFT based
on pions and nucleons as the only explicit DOFs, all effects of the � (and heavier resonances as
well as heavy mesons) are hidden in the (renormalized) values of (some of the) LECs starting from
the subleading effective Lagrangian. As a consequence, the phenomenologically important 2⇥-
exchange mechanism driven by the � excitation appears only at subleading order from diagrams
involving one insertion of the subleading pion-nucleon vertex. The values of the corresponding
LECs c3,4 are, to a large extent, driven by the � isobar [18] and turn out to be rather large in magni-
tude. It is possible to improve the convergence of the EFT expansion by treating the �-isobar as an
explicit DOF in the effective Lagrangian and counting m� �mN ⇥ M⇥ = O(Q) [19], see also [20]
for an alternative counting scheme. In such a �-full theory, the major part of the strong attractive
2⇥-exchange potential is shifted from N2LO to NLO, while the LECs c3,4 take more natural values
[17].

Having developed �EFT for the NN system, it is natural to address the question of the light
quark-mass- (mq-) dependence of the nuclear force and observables such as e.g. the deuteron bind-

4

N3LO, EGM
N3LO, EM
LO, Λ ➙ ∞

Neutron-proton phase shifts at N3LO
Entem, Machleidt ’04; Epelbaum, Glöckle, Meißner ’05

figure from H. Krebs 



neutron-proton scattering 

figure from E. Epelbaum and U.-G. Meißner 
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Figure 3: Chiral expansion of the isovector-tensor (upper row) and isoscalar
central (lower row) long-range potentials W̃T (r) and ṼC(r), respectively. The
left (right) panel shows the results for the EFT without (with) explicit �(1232)
degrees of freedom. The light-shaded band shows the estimation of the intrinsic
model dependence associated with the short-range components as explained in
the text (only shown for the theory without deltas).

where the regulator function F�(x) can e.g. be chosen as F�(x) = exp(�x2/⇥2).

Alternatively and more elegantly, one can write the functionsWX and VX in terms

of a continuous superposition of Yukawa functions which can easily be Fourier

transformed, see Ref. [19] for more details. For example, for central potentials

one obtains the unsubtracted dispersive representation

VC(q) =
2

�

� ⇥

2M�

dµµ
⇥C(µ)

µ2 + q2
, VC(r) =

1

2�2r

� ⇥

2M�

dµµe�µr⇥C(µ) , (19)

where ⇥C(µ) = Im [VC(0+ � iµ)] is the corresponding spectral function.

In Fig. 3 we show the chiral expansion for the two most important cases, namely

for the isovector-tensor and isoscalar-central potentials W̃T (r) and ṼC(r). We

also include the contributions at next-to-next-to-next-to-leading order (N3LO)

whose explicit form can be found in Ref. [21] but restrict ourselves to the local

pieces omitting the 1/mN corrections. The shaded bands in the figure visualize

the estimated scheme dependence which is intrinsic to the separation between

the long- and short-range contributions in the potential. Specifically, we only

include in the dispersive integrals in Eq. (19) the components in the spectrum with

µ < ⇥̃ = 1GeV. The high-µ components generate terms which, at low momenta,

are indistinguishable from contact interactions parameterizing the short-range
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ShortErange+part+of+the+NN+force+is+schemeEdependent+(parametriza(on)

LongErange+part+is+schemeEindependent+and+is+predicted+by+chiral+EFT

Convergence+of+chiral+expansion+is+clarified+in+a+theory+with+explicit+Δ(1232)+

figure from H. Krebs 

band = scheme dependence from cutoff variation in pion loops 
(uses spectral function regularization)  
 
isovector-tensor (top) dominated by one-pion exchange 
ioscalar-central (bottom) attraction due to two-pion exchange 


