Figures from: Review of Particle Physics http://pdg.lbl.gov
Kronfeld and Quigg, Resource Letter QCD, arXiv:1002.5032.

Strong coupling

FIG. 4: Determinations of $\alpha_{\rm s}(M_Z)$ from several processes. In most cases, the value measured at a scale μ has been evolved to $\mu=M_Z$. Error bars include the theoretical uncertainties. Adapted from Ref. [284]

"Seeing" quark and gluons through jets

Potential energy between quarks

FIG. 2: The potential energy V(r) between static sources of color (in an approximation without sea quarks). The zero of energy and the units are set by a conventional distance r_0 , defined by $r_0^2 dV/dr = 1.65$. The data points are from lattice QCD, generated at several values of $\beta = 6/g^2$, which—via dimensional transmutation—corresponds to varying the spacing between lattice sites. The black curve is a fit of these data to the potential model of Refs. [109]110. From Ref. [250]

Meson and baryon masses from lattice QCD BMW collaboration (2010)

FIG. 22 Prediction of the light hadron spectrum in full $N_f = 2 + 1$ QCD according to (Durr et al., 2008). Open circles are input quantities while filled circles are predictions. Experimental masses of hadrons that are stable in QCD are given with a vertical bar while for resonant states the box indicates the decay width. Experimental numbers are from (Amsler et al., 2008).

Baryons

Pseudoscalar

and

Vector Mesons

QCD phase diagram

FIG. 11: Order parameters for deconfinement (top) and chiral symmetry restoration (bottom), as a function of temperature. The physical temperature $T=a/N_{\tau}$, where a is the lattice spacing. Agreement for several values of N_{τ} thus indicates that discretization effects from the lattice are under control. From Refs. [477,478]

FIG. 10: Phase diagram of QCD in the μ -T plane. Here μ denotes baryon chemical potential and T temperature. At low μ , there is a smooth transition with varying T, probed by heavyion collisions and lattice-QCD calculations. At higher μ the phases are informed by models and other theoretical considerations. Hadronic matter denser than neutron stars is thought to exhibit "color superconductivity," first without and eventually with "color-flavor locking." Adapted from Ref. $\boxed{465}$.