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Lectures for Week 1

M. QCD 1 (as); Scattering theory 1 (rjf)

T. Nuclear forces 1 (rjf); Scattering theory 2 (as)

W. Nuclear forces 2 (rjf); Renormalization and Universality (as)

Th. Cold atoms and neutrons, QMC (ag);
Tensor/spin-orbit forces, deuteron properties (rjf)

F. QMC and chiral EFT interactions (ag);
Three-body forces and halo nuclei (as)
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Example: coordinate basis for local one-body potential
Discretize 0 ≤ r ≤ Rmax with ri = i × h, where h = Rmax/N

We can approximate the Schrödinger equation at point rk as

− ~2

2M
u(rk + h)− 2u(rk ) + u(rk − h)

h2 + V (rk )u(rk ) = Eu(rk ) .

or −uk+1 − 2uk + uk−1

h2 + Vk uk = Euk .

In matrix form with u0 = 0, uN ≈ 0, this is tri-diagonal (~ = 2M = 1):
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If V is non-local, it has off-diagonal matrix elements in this basis
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Identifying the S-wave scattering length a0
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From Filomena Nunes notes

62 Scattering theory
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Fig. 3.4. The correspondences between the energy (left) and momentum (right)
complex planes. The arrows show the trajectory of a bound state caused by a
progressively weaker potential: it becomes a resonance for L > 0 or when there is
a Coulomb barrier, otherwise it becomes a virtual state. Because E ∝ k2, bound
states on the positive imaginary k axis and virtual states on the negative imaginary
axis both map onto the negative energy axis.

is extremely sensitive to the height of these barriers. Very wide resonances,

or poles a long way from the real axis, will not have a pronounced effect on

scattering at real energies, especially if there are several of them. They may

thus be considered less important physically.

The case of neutral scattering in L = 0 partial waves deserves special at-

tention, since here there is no repulsive barrier to trap e.g. a s-wave neutron.

There is no Breit-Wigner form now, and mathematically the S matrix pole

Sp is found to be on the negative imaginary k axis: the diamonds in Fig. 3.4.

This corresponds to a negative real pole energy, but this is not a bound state,

for which the poles are always on the positive imaginary k axis. The neutral

unbound poles are called virtual states, to be distinguished from both bound

states and resonances. The dependence on the sign of kp = ±
√

2µEp/!2

means we should write the S matrix as a function of k not E. A pure virtual

state has pole at kp = i/a on the negative imaginary axis, described by a

negative value of a called the scattering length. This corresponds to the

analytic form

S(k) = −k + i/a

k − i/a
, (3.1.94)

giving δ(k) = − arctan ak, or k cot δ(k) = −1/a. These formulae describe

the phase shift behaviour close to the pole, in this case for low momenta

where k not too much larger than 1/|a|. For more discussion see for example

Taylor [5, §13-b].
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Quark (QCD) vs. hadronic NN interaction
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Old goal: replace hadronic descriptions at ordinary nuclear
densities with quark description (since QCD is the theory)
New goal: use hadronic dof’s systematically at low E

Seek model independence and theory error estimates
Future: Use lattice QCD to match via “low-energy constants”
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“Traditional” nucleon-nucleon interaction (from T. Papenbrock)

Dick Furnstahl TALENT: Nuclear forces



Scattering 1 Forces 1

Effective theories [H. Georgi, Ann. Rev. Nucl. Part. Sci. 43, 209 (1993)]

One of the most astonishing things about the world in which we live is that
there seems to be interesting physics at all scales.
To do physics amid this remarkable richness, it is convenient to be able to
isolate a set of phenomena from all the rest, so that we can describe it
without having to understand everything. Fortunately, this is often
possible. We can divide up the parameter space of the world into different
regions, in each of which there is a different appropriate description of the
important physics. Such an appropriate description of the important
physics is an “effective theory.”
The common idea is that if there are parameters that are very large or
very small compared to the physical quantities (with the same dimension)
that we are interested in, we may get a simpler approximate description of
the physics by setting the small parameters to zero and the large
parameters to infinity. Then the finite effects of the parameters can be
included as small perturbations about this simple approximate starting
point.
E.g., non-relativistic QM: c → ∞
E.g., chiral effective field theory (EFT): mπ → 0, MN → ∞
Features: model independence (completeness) and error estimates
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