Nuclear forces and their impact on structure, reactions and astrophysics

Dick Furnstahl Ohio State University July, 2013

Lectures for Week 2

- **M.** Chiral EFT 1 (as); χ -symmetry in NN scattering, QCD 2 (rif)
- **T.** Chiral EFT 2 (rjf); Three-nucleon forces 1 (as)
- **W.** Renormalization group 1 (rjf); Forces from LQCD, hyperon-nucleon (as)
- **Th.** Renormalization group 2 (rif); Nuclear forces and electroweak interactions (as)
	- **F.** Many-body overview (rjf); Three-nucleon forces 2 (as)

Outline

[High partial waves and chiral symmetry](#page-1-0)

[Lattice QCD](#page-5-0)

[NN from LQCD \(slides from recent talk by S. Aoki \)](#page-9-0)

Figures from Kaiser, Brockmann, Weise, Nucl. Phys. A 625, 758 (1997)

[What is a mixing angle?] What do you conclude about pion exchange?

Figures from Kaiser, Brockmann, Weise, Nucl. Phys. A 625, 758 (1997)

[What is a mixing angle?] What do you conclude about pion exchange?

Figures from Kaiser, Brockmann, Weise, Nucl. Phys. A 625, 758 (1997)

Why does OPE work better at low energy and high *L*?

Outline

[High partial waves and chiral symmetry](#page-1-0)

[Lattice QCD](#page-5-0)

[NN from LQCD \(slides from recent talk by S. Aoki \)](#page-9-0)

Visualization of the lattice [from T. Hatsuda]

$\mathbf{\Omega}\mathsf{C}\mathsf{D}\mathsf{S}\mathsf{F}$ LQCD calculations of f_π and g_A [arXiv:1302.2233] \ldots in the integration plotted against m2.

- "Two flavors of nonperturbatively $O(a)$ improved Wilson fermions and Wilson plaquette action"
- \bullet 3 lattice spacings: $a = 0.076$, 0.071, and 0.060 fm
- **•** Renormalized $f_\pi^{\pmb{R}} = \mathsf{89.7} \pm \mathsf{1.5} \pm \mathsf{1.8}\,\mathsf{MeV}$ at $m_{\pi} = 130 \text{ MeV}$
- Solid line is fit to chiral ansatz \implies also determines \bar{l}_4 from ChPT

Very encouraging but are all the systematic errors under control?

QCDSF LQCD calculations of f_{π} **and** g_{A} **[arXiv:1302.2233]**

 \cdots and \cdots \cdots \cdots \cdots \cdots $\overline{}$ Very encouraging but are all the systematic errors under control?

Outline

[High partial waves and chiral symmetry](#page-1-0)

[Lattice QCD](#page-5-0)

[NN from LQCD \(slides from recent talk by S. Aoki \)](#page-9-0)

Extensions of the HAL QCD approach to inelastic and multi-particle scatterings in lattice QCD

Sinya Aoki University of Tsukuba

HAL QCD Collaboration

INT Workshop INT-15-53W "Nuclear Reactions from Lattice QCD" Institute for Nuclear Theory, University of Washington , Seattle, USA, March 11-12, 2013

1. Introduction

HAL QCD approach to Nuclear Force

Potentials in QCD ?

What are "potentials" (quantum mechanical objects) in quantum field theories such as QCD ?

HAL QCD strategy

Full details: Aoki, Hatsuda & Ishii, PTP123(2010)89.

Step 1

define (Equal-time) Nambu-Bethe-Salpeter (NBS) Wave function

Spin model: Balog et al., 1999/2001

$$
\varphi_{\mathbf{k}}(\mathbf{r}) = \langle 0|N(\mathbf{x} + \mathbf{r}, 0)N(\mathbf{x}, 0)|NN, W_k \rangle \qquad w_k = 2\sqrt{\mathbf{k}^2 + m_N^2}
$$

energy

 $N(x) = \varepsilon_{abc} q^a(x) q^b(x) q^c(x)$: local operator

Key Property 1

Lin et al., 2001; CP-PACS, 2004/2005

$$
\varphi_{\mathbf{k}}(\mathbf{r}) \simeq \sum_{l,m} C_l \frac{\sin(kr - l\pi/2 + \delta_l(k))}{kr} Y_{ml}(\Omega_{\mathbf{r}})
$$

$$
r = |\mathbf{r}| \to \infty
$$

 $\delta_l(k)$ scattering phase shift (phase of the S-matrix by unitarity) in QCD !

How can we extract it ?

cf. Luescher's finite volume method

define non-local but energy-independent "potential" as

$$
\mu = m_N/2
$$

reduced mass

$$
[\epsilon_{k} - H_{0}] \varphi_{\mathbf{k}}(\mathbf{x}) = \int d^{3}y \frac{U(\mathbf{x}, \mathbf{y}) \varphi_{\mathbf{k}}(\mathbf{y})}{\text{non-local potential}}
$$

$$
\epsilon_{k} = \frac{\mathbf{k}^{2}}{2\mu} \qquad H_{0} = \frac{-\nabla^{2}}{2\mu}
$$

A non-local but energy-independent potential can be constructed as

inner product

$$
U(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{k}, \mathbf{k'}}^{W_k, W_{k'} \leq W_{\text{th}}} [\epsilon_k - H_0] \, \varphi_{\mathbf{k}}(\mathbf{x}) \eta_{\mathbf{k}, \mathbf{k'}}^{-1} \varphi_{\mathbf{k'}}^{\dagger}(\mathbf{y}) \qquad \qquad \eta_{\mathbf{k}, \mathbf{k'}}^{-1} : \text{ inverse of } \eta_{\mathbf{k}, \mathbf{k'}} = (\varphi_{\mathbf{k}}, \varphi_{\mathbf{k'}})
$$
\n
$$
\varphi_{\mathbf{k}} \text{ is linearly independent.}
$$

For $W_{\mathbf{p}} < W_{\text{th}} = 2m_N + m_{\pi}$ (threshold energy)

$$
\int d^3y \, U(\mathbf{x}, \mathbf{y}) \phi_{\mathbf{p}}(\mathbf{y}) = \sum_{\mathbf{k}, \mathbf{k'}} [\epsilon_k - H_0] \, \varphi_{\mathbf{k}}(x) \eta_{\mathbf{k}, \mathbf{k'}}^{-1} \eta_{\mathbf{k'}, \mathbf{p}} = [\epsilon_p - H_0] \, \varphi_{\mathbf{p}}(x)
$$

Note 1: Potential satisfying this is not unique.

Note2: Non-relativistic approximation is NOT used. We just take the equal-time frame.

expand the non-local potential in terms of derivative as
$$
U(\mathbf{x}, \mathbf{y}) = V(\mathbf{x}, \nabla)\delta^3(\mathbf{x} - \mathbf{y})
$$

$$
V(\mathbf{x}, \nabla) = V_0(r) + V_\sigma(r)(\sigma_1 \cdot \sigma_2) + V_T(r)S_{12} + V_{LS}(r)\mathbf{L} \cdot \mathbf{S} + O(\nabla^2)
$$

\nLO
\nLO
\n
$$
LQ
$$

$$
\begin{array}{ll}\text{spins} & \text{spins} \\ \text{tensor operator} & S_{12} = \frac{3}{r^2} (\sigma_1 \cdot \mathbf{x}) (\sigma_2 \cdot \mathbf{x}) - (\sigma_1 \cdot \sigma_2) \end{array}
$$

$$
V_A(\mathbf{x})
$$

 $Sten 4$ extract the local potential. At LO, for example, we simply have

$$
V_{\rm LO}({\bf x}) = \frac{[\epsilon_k - H_0]\varphi_{\bf k}({\bf x})}{\varphi_{\bf k}({\bf x})}
$$

 $Sten 5$ solve the Schroedinger Eq. in the infinite volume with this potential.

phase shifts and binding energy below inelastic threshold

(We can calculate the phase shift at all angular momentum.)

- exact by construction $\delta_L(k)$
- $\delta_L(p\neq k)$ approximated one by the derivative expansion

expansion parameter

$$
\frac{W_p - W_k}{W_{\text{th}} - 2m_N} \simeq \frac{\Delta E_p}{m_\pi}
$$

We can check a size of errors at LO of the expansion.

We can improve results by extracting higher order terms in the expansion.

2. Results from lattice QCD

Ishii *et al.* (HALQCD), PLB712(2012) 437.

Extraction of NBS wave function observable and therefore is no the criticism in the criticism of Ref. [18, 24, 25] is not ref. [18, 25] is not $\overline{\mathbf{r}}$ and therefore is $\overline{\mathbf{r}}$ argument shows that the criticism of Ref. $\overline{\mathbf{r}}$ 3 Lattice formulation

NBS wave function	Potential
$\varphi_{\mathbf{k}}(\mathbf{r}) = \langle 0 N(\mathbf{x} + \mathbf{r}, 0)N(\mathbf{x}, 0) NN, W_k \rangle$	$[\epsilon_k - H_0] \varphi_{\mathbf{k}}(\mathbf{x}) = \int d^3y \, U(\mathbf{x}, \mathbf{y}) \varphi_{\mathbf{k}}(\mathbf{y})$
4-pt Correlation function	source for NN
$F(\mathbf{r}, t - t_0) = \langle 0 T\{N(\mathbf{x} + \mathbf{r}, t)N(\mathbf{x}, t)\}\frac{\overline{\mathcal{J}}(t_0) 0\rangle}{\underline{\mathcal{J}}(t_0) 0\rangle}$	
$F(\mathbf{r}, t - t_0) = \langle 0 T\{N(\mathbf{x} + \mathbf{r}, t)N(\mathbf{x}, t)\}\sum_{n,s_1,s_2} \frac{ 2N, W_n, s_1, s_2\rangle\langle 2N, W_n, s_1, s_2 \overline{\mathcal{J}}(t_0) 0\rangle}{A_{n,s_1,s_2} = \langle 2N, W_n, s_1, s_2 \overline{\mathcal{J}}(0) 0\rangle}$	
ground state saturation at large t	

$$
\lim_{(t-t_0)\to\infty} F(\mathbf{r}, t-t_0) = A_0 \varphi^{W_0}(\mathbf{r}) e^{-W_0(t-t_0)} + O(e^{-W_{n\neq 0}(t-t_0)})
$$

WOO WAVE TURNST ENERGY OF THE SOURCE THE SOURCE OF THE SOURCE THE SOURCE OF THE SO WO WAVE TUNCHOIT **NBS wave function**

This is a standard method in lattice QCD and was employed for our first calculation. This is a standard method in lattice QCD and was employed for our first calculation.

Ishii *et al.* (HALQCD), PLB712(2012) 437

Improved method

normalized 4-pt Correlation function $R(\mathbf{r},t) \equiv F(\mathbf{r},t)/(e^{-m_Nt})^2 = \sum A_n \varphi^{W_n}(\mathbf{r})e^{-\Delta W_n t}$ n $\Delta W_n = W_n - 2m_N = \frac{k_n^2}{m_N} - \frac{(\Delta W_n)^2}{4m_N}$ N 4 m N

$$
-\frac{\partial}{\partial t}R(\mathbf{r},t) = \left\{H_0 + \frac{V_1}{\underline{U}} - \frac{\mathbf{1}}{4m_N}\frac{\partial^2}{\partial t^2}\right\}R(\mathbf{r},t)
$$

potential Leading Order **energy-independent**

$$
\left\{-H_0 - \frac{\partial}{\partial t} + \frac{1}{4m_N} \frac{\partial^2}{\partial t^2}\right\} R(\mathbf{r}, t) = \int d^3 r' \, U(\mathbf{r}, \mathbf{r}') R(\mathbf{r}', t) = V_C(\mathbf{r}) R(\mathbf{r}, t) + \cdots
$$
\n
$$
\text{total}
$$

1st 2nd 3rd

3rd term(relativistic correction) is negligible.

Ground state saturation is no more required. (advantage over finite volume method.)

Qualitative features of NN potential are reproduced.

(1)attractions at medium and long distances (2)repulsion at short distance(repulsive core) It has a reasonable shape.

The strength is weaker due to the heavier quark mass.

Need calculations at physical quark mass.

- no repulsive core in the tensor potential.
- \bullet the tensor potential is enhanced in full QCD

Quark mass dependence (full QCD)

- mass decreases. • the tensor potential increases as the pion
	- manifestation of one-pion-exchange?
- \bullet both repulsive core and attractive pocket are α repaisive core and dimedive
o grow as the pion mass decre also grow as the pion mass decreases.

Potentials for the negative parity sector (<u>Potentials for</u> *r*, *r*′) = *VNN* (*r*, ∇) δ (*r* − *r*′) $\frac{1}{\sqrt{1-\frac{1$

)

$$
V_{NN}^{(I)}(\vec{r}, \vec{\nabla}) = V_0^{(I)}(r) + V_{\sigma}^{(I)}(r) \cdot (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_{\rm T}^{(I)}(r) \cdot S_{12} + V_{\rm LS}^{(I)}(r) \cdot \vec{L} \cdot \vec{S} + O(\nabla^2)
$$

\nLO
$$
V_{\rm C}(r) = V_0(r) + V_{\sigma}(r) \cdot (\vec{\sigma}_1 \cdot \vec{\sigma}_2)
$$
\n
$$
= \begin{cases} V_0(r) - 3V_{\sigma}(r) & \text{for } S=0 \\ V_0(r) + V_{\sigma}(r) & \text{for } S=1 \end{cases}
$$

 $^{2S+1}L_J$

UNN (*I*)

- S=1 channel: ${}^{3}P_{0}$, ${}^{3}P_{1}$, 3
	- Central & tensor forces in LO
	- Spin -orbit force in NLO

2-flavor QCD, a=0.16 fm

 $m_{\pi} \simeq 1.1 \text{ GeV}$

Me_V

HAL QCD Spin-orbit force from Lattice QCD

K. Murano et al, arXiv:1305.2293

