Nuclear forces and their impact on structure, reactions and astrophysics

Dick Furnstahl Ohio State University July, 2013

Lectures for Week 1

- **M.** QCD 1 (as); Scattering theory 1 (rjf)
- **T.** Nuclear forces 1 (rif); Scattering theory 2 (as)
- **W.** Nuclear forces 2 (rjf); Renormalization and Universality (as)
- **Th.** Cold atoms and neutrons, QMC (ag); Tensor/spin-orbit forces, deuteron properties (rjf)
	- **F.** QMC and chiral EFT interactions (ag); Three-body forces and halo nuclei (as)

Outline

[Scattering theory 1](#page-1-0)

Dick Furnstahl [TALENT: Nuclear forces](#page-0-0)

Kinematics for scattering in lab and relative coordinates

Dick Furnstahl [TALENT: Nuclear forces](#page-0-0)

Scattering incident plane wave [From F. Nunes notes]

Repulsive and attractive phase shifts

Mathematica square well phase shifts: *n*π **ambiguity**

 $In [5] :=$ **deltaAnalytic** $\begin{bmatrix} k & V0 \end{bmatrix}$:= $\texttt{ArcTan}[Sqrt{[k]} / {[Ek[k] + V0]}] \texttt{Tan}[RSqrt{2\mu (Ek[k] + V0)}]]] - RSqrt{2\mu Ek[k]}$

Use Cell->Convert to->TraditionalForm to get it in a form easier to check we have entered it correctly:

$$
\text{deltaAnalytic}(k_{\perp},\text{V0}_{\perp}) := \tan^{-1}\left(\sqrt{\frac{E_{K}(k)}{E_{K}(k)+V0}}\ \tan\left(R\ \sqrt{2\ \mu\left(E_{K}(k)+V0\right)}\ \right)\right) - R\ \sqrt{2\ \mu\ E_{K}(k)}
$$

 $ln[7]$:= Plot[deltaAnalytic[k, 0.5], {k, 0, 10}]

What is going on with the steps? Why are they there? Is the phase shift really discontinuous? How would you fix it?

Mathematica square well phase shifts: Levinson's theorem!

Variable Phase Approach equation solved in Mathematica

```
In[12] \equiv deltaVPA[k, V0] := (
 Rmax = 10; (* integrate out to Rmax; just need Rmax > R for square well *ans = NDSolve[{deltarho '[r] == -(1/k) 2 u VSw[r, V0] Sin[kr + deltarho[r]] ^2,
    deltarho[0] == 0, deltarho, \{r, 0, Rmax\}, AccuracyGoal \rightarrow 6, PrecisionGoal \rightarrow 6];
 (deltarho[r] /. ans) [[1]] /. r \rightarrow Rmax (* evaluate at r=Rmax *)
\overline{L}
```

```
\ln(15):= Plot[Evaluate<sup>[deltarho]</sup>r] /. ans], {r, 0, Rmax}]
```


AV18

Example: coordinate basis for *local* **one-body potential**

- **O** Discretize $0 \le r \le R_{\text{max}}$ with $r_i = i \times h$, where $h = R_{\text{max}}/N$
- \bullet We can approximate the Schrödinger equation at point r_k as

$$
-\frac{\hbar^2}{2M}\frac{u(r_k+h)-2u(r_k)+u(r_k-h)}{h^2}+V(r_k)u(r_k)=Eu(r_k).
$$

or
$$
-\frac{u_{k+1}-2u_k+u_{k-1}}{h^2}+V_ku_k=Eu_k.
$$

In matrix form with $u_0 = 0$, $u_N \approx 0$, this is tri-diagonal ($\hbar = 2M = 1$):

If *V* is *non-local*, it has off-diagonal matrix elements in this basis

Identifying the S-wave scattering length a_0

From Filomena Nunes notes

states on the positive imaginary k axis and virtual states on the negative imaginary