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Lectures for Week 1

M. QCD 1 (as); Scattering theory 1 (rjf)

T. Nuclear forces 1 (rjf); Scattering theory 2 (as)

W. Nuclear forces 2 (rjf); Renormalization and Universality (as)

Th. Cold atoms and neutrons, QMC (ag);
Tensor/spin-orbit forces, deuteron properties (rjf)

F. QMC and chiral EFT interactions (ag);
Three-body forces and halo nuclei (as)
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Scattering 1

Kinematics for scattering in lab and relative coordinates
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Scattering 1

Scattering incident plane wave [From F. Nunes notes]

42 Scattering theory

R = 0 Beam direction +z

Incoming plane wave exp(ikz)

Outgoing spherical waves exp(ikR)/R

Fig. 3.1. A plane wave in the +z direction incident on a spherical target, giving
rise to spherically-outgoing scattering waves

3.1.1 Partial wave scattering from a finite spherical potential

We start our development of scattering theory by finding the elastic scat-

tering from a potential V (R) that is spherically symmetric and so can be

written as V (R). Finite potentials will be dealt with first: those for which

V (R) = 0 for R ≥ Rn, where Rn is the finite range of the potential. This

excludes Coulomb potentials, which will be dealt with later.

We will examine the solutions at positive energy of the time-independent

Schrödinger equation with this potential, and show how to find the scattering

amplitude f(θ, φ) and hence the differential cross section σ(θ, φ) = |f(θ, φ)|2
for elastic scattering. We will use a decomposition in partial waves L=0, 1,

· · · , and the spherical nature of the potential will mean that each partial

wave function can be found separately.

The time-independent Schrödinger equation for the relative motion with

c.m. energy E, from Eq. (2.3.18), is

[T̂ + V − E]ψ(R, θ, φ) = 0 , (3.1.1)

using polar coordinates (θ, φ) such that z = R cos θ, x = R sin θ cos φ and

y = R sin θ sinφ. In Eq. (3.1.1), the kinetic energy operator T̂ uses the

reduced mass µ, and is

T̂ = − !2

2µ
∇2

R

=
1

2µ

[
− !2

R2

∂

∂R

(
R2 ∂

∂R

)
+

L̂2

R2

]
, (3.1.2)
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Repulsive and attractive phase shifts
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Scattering 1

Mathematica square well phase shifts: nπ ambiguity
In[5]:= deltaAnalytic@k_, V0_D :=

ArcTan@Sqrt@Ek@kD ê HEk@kD + V0LD Tan@R Sqrt@2 m HEk@kD + V0LDDD - R Sqrt@2 m Ek@kDD
Use Cell->Convert  to->TraditionalForm to get it in a form easier to check we have entered it 
correctly:

deltaAnalyticHk_, V0_L := tan-1 EkHkL
EkHkL+V0

tanJR 2 m HEkHkL +V0L N -R 2 mEkHkL
In[7]:= Plot@deltaAnalytic@k, 0.5D, 8k, 0, 10<D

Out[7]=
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What is going on with the steps?  Why are they there?  Is the phase shift really discontinuous?  How 
would you fix it?
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Mathematica square well phase shifts: Levinson’s theorem!

In[22]:= Table@Plot@8deltaVPA@k, V0D<, 8k, 0.001, 20<, PlotRange Æ FullD,8V0, 80.5, 1.0, 2.0, 5.0, 10.0, 20.0<<DH* Try for V0 = 0.5 to 20 *L
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Variable Phase Approach equation solved in Mathematica

In[12]:= deltaVPA@k_, V0_D := H
Rmax = 10; H* integrate out to Rmax; just need Rmax > R for square well *L
ans = NDSolve@8deltarho'@rD == -H1 ê kL 2 m Vsw@r, V0D Sin@k r + deltarho@rDD^2,

deltarho@0D == 0<, deltarho, 8r, 0, Rmax<, AccuracyGoal Æ 6, PrecisionGoal Æ 6D;Hdeltarho@rD ê. ansL@@1DD ê. r Æ Rmax H* evaluate at r=Rmax *LL
In[15]:= Plot@Evaluate@deltarho@rD ê. ansD, 8r, 0, Rmax<D

Out[15]=
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AV18

Dick Furnstahl TALENT: Nuclear forces
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Example: coordinate basis for local one-body potential
Discretize 0 ≤ r ≤ Rmax with ri = i × h, where h = Rmax/N

We can approximate the Schrödinger equation at point rk as

− ~2

2M
u(rk + h)− 2u(rk ) + u(rk − h)

h2 + V (rk )u(rk ) = Eu(rk ) .

or −uk+1 − 2uk + uk−1

h2 + Vk uk = Euk .

In matrix form with u0 = 0, uN ≈ 0, this is tri-diagonal (~ = 2M = 1):



2
h2 + V1 − 1

h2 0 · · · 0

− 1
h2

2
h2 + V2 − 1

h2

...

0 − 1
h2

. . .
...

...
. . . − 1

h2

0 · · · · · · − 1
h2

2
h2 + VN−1







u1

u2
...
...

uN−1




= E




u1

u2
...
...

uN−1




If V is non-local, it has off-diagonal matrix elements in this basis
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Identifying the S-wave scattering length a0
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From Filomena Nunes notes

62 Scattering theory
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Fig. 3.4. The correspondences between the energy (left) and momentum (right)
complex planes. The arrows show the trajectory of a bound state caused by a
progressively weaker potential: it becomes a resonance for L > 0 or when there is
a Coulomb barrier, otherwise it becomes a virtual state. Because E ∝ k2, bound
states on the positive imaginary k axis and virtual states on the negative imaginary
axis both map onto the negative energy axis.

is extremely sensitive to the height of these barriers. Very wide resonances,

or poles a long way from the real axis, will not have a pronounced effect on

scattering at real energies, especially if there are several of them. They may

thus be considered less important physically.

The case of neutral scattering in L = 0 partial waves deserves special at-

tention, since here there is no repulsive barrier to trap e.g. a s-wave neutron.

There is no Breit-Wigner form now, and mathematically the S matrix pole

Sp is found to be on the negative imaginary k axis: the diamonds in Fig. 3.4.

This corresponds to a negative real pole energy, but this is not a bound state,

for which the poles are always on the positive imaginary k axis. The neutral

unbound poles are called virtual states, to be distinguished from both bound

states and resonances. The dependence on the sign of kp = ±
√

2µEp/!2

means we should write the S matrix as a function of k not E. A pure virtual

state has pole at kp = i/a on the negative imaginary axis, described by a

negative value of a called the scattering length. This corresponds to the

analytic form

S(k) = −k + i/a

k − i/a
, (3.1.94)

giving δ(k) = − arctan ak, or k cot δ(k) = −1/a. These formulae describe

the phase shift behaviour close to the pole, in this case for low momenta

where k not too much larger than 1/|a|. For more discussion see for example

Taylor [5, §13-b].
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